• Title/Summary/Keyword: RNA mapping

검색결과 79건 처리시간 0.025초

Identification of a Regulatory Element Required for 3’-End Formation in Transcripts of rhp51$^+$, a recA Homolog of the Fission Yeast Schizosaccharomyces pombe

  • Yeun Kyu Jang
    • Animal cells and systems
    • /
    • 제3권4호
    • /
    • pp.413-415
    • /
    • 1999
  • Our previous report demonstrated that the rhp51$^+$, a recA and RAD51 homolog of the fission yeast, encodes three transcripts of 1.9, 1.6 and 1.3 kb which have at least six polyadenylation sites. The 3'-end of the gene alone can direct the formation of multiple, discrete 3'ends of the transcripts. To identify the regulatory element required for the 3'-end formation of -rhp51$^+$ deletion mapping analysis was performed. Northern blot analysis revealed that the 254-bp DNA fragment including 4 distinct poly (A) sites downstream from the Hindlll site, is crucial for normal 3'-end formation. Deletion of the 3'-terminal AU rich region caused appearance of read-through RNA, leading to enhancement of survival rate of the rhp51 deletion mutant in response to DNA damaging agent, methylmethane sulfonate (MMS). The results imply that the rhp51$^+$ system may be useful for molecular analysis of the 3'-end formation of RNA in the fission yeast.

  • PDF

분자생물학의 정신과적 적용 (Molecular Application to Psychiatry)

  • 이민수
    • 생물정신의학
    • /
    • 제1권1호
    • /
    • pp.60-66
    • /
    • 1994
  • Advances in molecular biology have renewed hope for the discovery of disease relevant gene. The basic strategy is gene mapping and likely to have on important role in psychiatric research and practice. Recent linkage studies of chromosomal loci to psychiatric diseases shed light on the potential for new genetics in psychiatric science. This article reviews molecular application to psychiatrymethodological issues in genetic linkage, study of gene expression by analysis of mRNA, and current linkage studies in psychiatric diseases.

  • PDF

FusionScan: accurate prediction of fusion genes from RNA-Seq data

  • Kim, Pora;Jang, Ye Eun;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.26.1-26.12
    • /
    • 2019
  • Identification of fusion gene is of prominent importance in cancer research field because of their potential as carcinogenic drivers. RNA sequencing (RNA-Seq) data have been the most useful source for identification of fusion transcripts. Although a number of algorithms have been developed thus far, most programs produce too many false-positives, thus making experimental confirmation almost impossible. We still lack a reliable program that achieves high precision with reasonable recall rate. Here, we present FusionScan, a highly optimized tool for predicting fusion transcripts from RNA-Seq data. We specifically search for split reads composed of intact exons at the fusion boundaries. Using 269 known fusion cases as the reference, we have implemented various mapping and filtering strategies to remove false-positives without discarding genuine fusions. In the performance test using three cell line datasets with validated fusion cases (NCI-H660, K562, and MCF-7), FusionScan outperformed other existing programs by a considerable margin, achieving the precision and recall rates of 60% and 79%, respectively. Simulation test also demonstrated that FusionScan recovered most of true positives without producing an overwhelming number of false-positives regardless of sequencing depth and read length. The computation time was comparable to other leading tools. We also provide several curative means to help users investigate the details of fusion candidates easily. We believe that FusionScan would be a reliable, efficient and convenient program for detecting fusion transcripts that meet the requirements in the clinical and experimental community. FusionScan is freely available at http://fusionscan.ewha.ac.kr/.

Analysis of allele-specific expression using RNA-seq of the Korean native pig and Landrace reciprocal cross

  • Ahn, Byeongyong;Choi, Min-Kyeung;Yum, Joori;Cho, In-Cheol;Kim, Jin-Hoi;Park, Chankyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1816-1825
    • /
    • 2019
  • Objective: We tried to analyze allele-specific expression in the pig neocortex using bioinformatic analysis of high-throughput sequencing results from the parental genomes and offspring transcriptomes from reciprocal crosses between Korean Native and Landrace pigs. Methods: We carried out sequencing of parental genomes and offspring transcriptomes using next generation sequencing. We subsequently carried out genome scale identification of single nucleotide polymorphisms (SNPs) in two different ways using either individual genome mapping or joint genome mapping of the same breed parents that were used for the reciprocal crosses. Using parent-specific SNPs, allele-specifically expressed genes were analyzed. Results: Because of the low genome coverage (${\sim}4{\times}$) of the sequencing results, most SNPs were non-informative for parental lineage determination of the expressed alleles in the offspring and were thus excluded from our analysis. Consequently, 436 SNPs covering 336 genes were applicable to measure the imbalanced expression of paternal alleles in the offspring. By calculating the read ratios of parental alleles in the offspring, we identified seven genes showing allele-biased expression (p<0.05) including three previously reported and four newly identified genes in this study. Conclusion: The newly identified allele-specifically expressing genes in the neocortex of pigs should contribute to improving our knowledge on genomic imprinting in pigs. To our knowledge, this is the first study of allelic imbalance using high throughput analysis of both parental genomes and offspring transcriptomes of the reciprocal cross in outbred animals. Our study also showed the effect of the number of informative animals on the genome level investigation of allele-specific expression using RNA-seq analysis in livestock species.

Schizosaccharomyces pombe 포자형성유전자 (spo 5)의 발현조절기구의 해석 (Expression and Regulatory Analysis of Sporulation Gene (spo 5) in Schizosaccharomyces pombe)

  • 김동주;하전친
    • 한국수산과학회지
    • /
    • 제30권1호
    • /
    • pp.46-54
    • /
    • 1997
  • 분열효모 S. pombe의 포자형성은 배지상의 질소원의 고갈에 의하여 유도되어진다. 감수분열로부터 포자형성에 도달하는 과정에는 다수의 특이적인 유전자가 기능을 하고 있다. 본 연구에서는, 전포자막 구축에 필수적인 유전자 spo 5의 발현조절과 유전자의 메커니즘에 관하여 조사하였다. spo 5 유전자를 보유하는 약 5kb의 Hind III DNA 단편을 cloning 하였다. 이 단편으로부터 제한효소지도를 작성하여 얻어진 DNA 단편을 probe로 하여, RNA blot-hybridization를 이행하였다. 이 결과, 최소배지의 hetro matting-type 균주 (CD16-1)로 부터 조제한 mRNA가 검출되었다. 그리고 이 전사산물을 전사레밸에서 해석하기 위하여, homo matting-type (CD16-3) 균주를 질소원이 함유되지 않은 포자형성배지에서 배양한 후, 동일한 방법으로 mRNA를 조제하여 Northern hybridization으로 조사하였다. 그 결과, 이들 세포에서는 3.2kb에서만 전사산물이 검출되었으며, 2.5kb의 mRNA는 검출되지 않았다. 이상의 결과로 부터 spo 5 유전자를 coding하는 전사산물인 2.5kb의 mRNA는 질소원의 고갈된 상태하에서, 접합형 유전자좌의 hetro 접합성을 요구하는 것으로 입증하였다. spo 5 유전자의 전사발현은 질소원이 결핍과 접합형 유전자좌의 구성에 따른 환경요인과 유전적 요인에 의해서 제어되어지고 있다는 것을 입증하였다.

  • PDF

Sequence Analysis and Expression of Xylanase Gene (xynY) from Alkalophilic Bacillus sp. YC-335

  • Park, Young-Seo;Yum, Do-Young;Kim, Jin-Man;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권4호
    • /
    • pp.224-231
    • /
    • 1993
  • The nucleotide sequence of the xylanase gene (xynY) from alkalophilic Bacillus sp. YC-335 was determined and analyzed. An open reading frame of 1, 062 base pairs for xynY gene was observed and encoded for a protein of 354 amino acids with a molecular weight of 38, 915. S1 nuclease mapping showed that the transcription initiation sites of the xynY gene were different in Bacillus sp. YC-335 and Escherichia coli HB101 (pYS55). S1 mapping also showed that -10 region of the xynY gene recognized by RNA polymerases of E. coli and Bacillus sp. YC-335 were TACAGT and TATGAT , respectively. A ribosome binding site sequence with the free energy of -17.0 Kcal/mol was observed 9 base pairs upstream from the unusual initiation codon, TTG. The proposed signal sequence consisted of 27 amino acids, 2 of which were basic amino acid residues and 21 were hydrophobic amino acid residues. When the amino acid sequences of xylanases were compared, Bacillus sp. YC-335 xylanase showed more than 50% homology with xylanases from B. pumilus, B. subtilis, and B. circulans.

  • PDF

Identification of the σ70-Dependent Promoter Controlling Expression of the ansPAB Operon of the Nitrogen-Fixing Bacterium Rhizobium etli

  • Angelica, Moreno-Enriquez;Zahaed, Evangelista-Martinez;Luis, Servin-Gonzalez;Maria Elena, Flores-Carrasco
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1241-1245
    • /
    • 2015
  • The aim of the present work was to examine the putative promoter region of the operon ansPAB and to determine the general elements required for the regulation of transcriptional activity. The transcriptional start site of the ansPAB promoter was determined by using highresolution S1-nuclease mapping. Sequence analysis of this region showed -10 and -35 elements, which were consistent with consensus sequences for R. etli promoters that are recognized by the major form of RNA polymerase containing the σ70 transcription factor. Mutation studies affecting several regions located upstream of the transcriptional start site confirmed the importance of these elements on transcriptional expression.

Analysis of Transcripts Expressed from the UL47 Gene of Human Cytomegalovirus

  • Hyun, Jong-Jun;Park, Hyo-Soon;Kim, Ki-Ho;Kim, Hung-Jin
    • Archives of Pharmacal Research
    • /
    • 제22권6호
    • /
    • pp.542-548
    • /
    • 1999
  • The UL47 gene (b 60390-b 60388) located in the unique long region of the human cytomegalovirus (HCMV) AD169 strain genome was analyzed RNA mapping. Northern blot analysis showed that the UL47 gene was expressed at late times after infection (72 h postinfection). The 9.7-kb transcript was expressed in the infected cells but not in phosphonoformate-treated cells at 72 hpi, indicating that the UL47 gene was only expressed at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer at late times after infection. To map the 5'-end and 3'-end of UL47 transcripts, primer extension and RNase protection analysis were performed. Primer extension analysis revealed that the transcription initiation site of UL47 was located in 27 bp downstream (b 60323) of the TATA box motif. The sizes of UL47 ORF (approximately 2.9-kb) and UL48 ORF (approximately 6.7-kb) deduced from computer sequence analysis suggest that the expressed 9.7-kb transcript of UL47 uses the 3'-end polyadenylation signal of Ul48. The result of RNase protection determined that the 3'-end of UL47 RNA utilized the 3'-end polyadenylation signal of UL48, which is located in HCMV genome b 70082.

  • PDF

Comprehensive Transcriptomic Analysis of Cordyceps militaris Cultivated on Germinated Soybeans

  • Yoo, Chang-Hyuk;Sadat, Md. Abu;Kim, Wonjae;Park, Tae-Sik;Park, Dong Ki;Choi, Jaehyuk
    • Mycobiology
    • /
    • 제50권1호
    • /
    • pp.1-11
    • /
    • 2022
  • The ascomycete fungus Cordyceps militaris infects lepidopteran larvae and pupae and forms characteristic fruiting bodies. Owing to its immune-enhancing effects, the fungus has been used as a medicine. For industrial application, this fungus can be grown on geminated soybeans as an alternative protein source. In our study, we performed a comprehensive transcriptomic analysis to identify core gene sets during C. militaris cultivation on germinated soybeans. RNA-Seq technology was applied to the fungal cultures at seven-time points (2, 4, and 7-day and 2, 3, 5, 7-week old cultures) to investigate the global transcriptomic change. We conducted a time-series analysis using a two-step regression strategy and chose 1460 significant genes and assigned them into five clusters. Characterization of each cluster based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases revealed that transcription profiles changed after two weeks of incubation. Gene mapping of cordycepin biosynthesis and isoflavone modification pathways also confirmed that gene expression in the early stage of GSC cultivation is important for these metabolic pathways. Our transcriptomic analysis and selected genes provided a comprehensive molecular basis for the cultivation of C. militaris on germinated soybeans.

Characterization and Mapping of the Bovine FBP1 Gene

  • Guo, H.;Liu, W-S.;Takasuga, A.;Eyer, K.;Landrito, E.;Xu, Shang-zhong;Gao, X.;Ren, H-Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1319-1326
    • /
    • 2007
  • Fructose-1,6-bisphosphatase (FBP1) is a key regulatory enzyme of gluconeogenesis that catalyzes the hydrolysis of fructose-1,6-bisphosphate to generate fructose-6-phosphate and inorganic phosphate. Deficiency of fructose-1, 6-bisphosphatase is associated with fasting hypoglycemia and metabolic acidosis. The enzyme has been shown to occur in bacteria, fungi, plants and animals. The bovine FBP1 gene was cloned and characterized in this study. The full length (1,241 bp) FBP1 mRNA contained an open reading frame (ORF) encoding a protein of 338 amino acids, a 63 bp 5' untranslated region (UTR) and a 131 bp 3' UTR. The bovine FBP1 gene was 89%, 85%, 82%, 82% and 74% identical to the orthologs of pig, human, mouse, rat and zebra fish at mRNA level, and 97%, 96%, 94%, 93% and 91% identical at the protein level, respectively. This gene was broadly expressed in cattle with the highest level in testis, and the lowest level in heart. An intronic single nucleotide polymorphism (SNP) (A/G) was identified in the $5^{th}$ intron of the bovine FBP1 gene. Genotyping of 133 animals from four beef breeds revealed that the average frequency for allele A (A-base) was 0.7897 (0.7069-0.9107), while 0.2103 (0.0893-0.2931) for allele B (G-base). Our preliminary association study indicated that this SNP is significantly associated with traits of Average Daily Feed Intake (ADFI) and Carcass Length (CL) (p<0.01). In addition, the FBP1 gene was assigned on BTA8 by a hybrid radiation (RH) mapping method.