• Title/Summary/Keyword: RNA binding proteins

Search Result 283, Processing Time 0.03 seconds

DAZL binds to the transcripts of several Tssk genes in germ cells

  • Zeng, Mei;Deng, Wenqian;Wang, Xinying;Qiu, Weimin;Liu, Yanyan;Sun, Huaqin;Tao, Dachang;Zhang, Sizhong;Ma, Yongxin
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • The Dazl gene encodes a germ-cell-specific RNA-binding protein which is essential for spermatogenesis. It has been proposed that this protein (DAZL) binds to RNA in the cytoplasm of germ cells and controls spermatogenesis. Using the specific nucleic acids associated with proteins (SNAAP) technique, we identified 17 target mRNAs bound by mDAZL. Among these transcripts, we focused on TSSK2, which encodes a testis-specific serine/threonine kinase. To date, five TSSK family members have been cloned, and all are exclusively expressed in the testis. We demonstrated that in addition to the TSSK1 3'UTR, the 3'UTRs of TSSKs 2 and 4 were bound by human and mouse DAZL, and that human DAZL (hDAZL) bound to the 3'UTR of human TSSK5 (hTSSK5). Our results suggest that the Dazl gene may play different roles in human and mouse spermatogenesis by regulating different members of the downstream gene family.

Molecular Mechanism Underlying Hesperetin-induced Apoptosis by in silico Analysis and in Prostate Cancer PC-3 Cells

  • Sambantham, Shanmugam;Radha, Mahendran;Paramasivam, Arumugam;Anandan, Balakrishnan;Malathi, Ragunathan;Chandra, Samuel Rajkumar;Jayaraman, Gopalswamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4347-4352
    • /
    • 2013
  • Aim: To investigate the molecular mechanisms underlying triggering of apoptosis by hesperetin using in silico and in vitro methods. Methods: The mechanism of binding of hesperetin with NF-${\kappa}B$ and other apoptotic proteins like BAX, BAD, $BCL_2$ and $BCL_{XL}$ was analysed in silico using Schrodinger suite 2009. In vitro studies were also carried out to evaluate the potency of hesperetin in inducing apoptosis using the human prostate cancer PC-3 cell line. Results: Hesperetin was found to exhibit high-affinity binding resulting from greater intermolecular forces between the ligand and its receptor NF-${\kappa}B$ (-7.48 Glide score). In vitro analysis using MTT assay confirmed that hesperetin reduced cell proliferation ($IC_{50}$ values of 90 and $40{\mu}M$ at 24 and 48h respectively) in PC-3 cells. Hesperetin also downregulated expression of the anti-apoptotic gene $BCL_{XL}$ at both mRNA and protein levels and increased the expression of pro-apoptotic genes like BAD at mRNA level and BAX at mRNA as well as protein levels. Conclusion: The results suggest that hesperetin can induce apoptosis by inhibiting NF-${\kappa}B$.

Increase of Grb2 and Ras Proteins and Expression of Growth Factors in LPS Stimulated Odontoblast-like Dental Pulp Cells

  • Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.43 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Inflammatory cells express the inflammatory cytokines and growth factors induced by lipopolysaccharide (LPS). Odontoblasts are located at the pulp-dentin interface and extend their cell processes far into the dentin where they are the first cells to encounter microorganisms or their products. Therefore, this study examined the expression of some growth factors related to the signal pathway, such as growth factor receptor binding protein 2 (Grb2)-Ras in odontoblast-like dental pulp cells, after a treatment with LPS. After 60 minutes, the mRNA and protein expression levels of Grb2 and Ras were higher in the LPS-treated cells than in the control cells. The level of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mRNA expression was increased significantly to a level similar to that of Grb2 and Ras at 60 minutes. The platelet-derived growth factor-AA (PDGF-AA) mRNA level was expressed strongly in the odontoblast like dental pulp cells without an association with LPS stimulation. Scanning electron microscopy revealed many extensions of the cytoplasmic processes and the number of processes increased gradually at 30, 60 and 90 minutes after LPS stimulation. From these results VEGF and bFGF expression might be induced through the Grb2-Ras signal transduction pathway in LPS treated odontoblasts.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim;Kim, Hangeun;Jung, Bong Jun;You, Ga Eun;Jang, Soojin;Chung, Dae Kyun
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

The IGFBP-1 mRNA Expression in HepG2 Cells is Affected by Inhibition of Heme Biosynthesis

  • Park, Jong-Hwan;Park, Tae-Kyu;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.385-389
    • /
    • 2001
  • Insulin-like growth factor binding protein-1 (IGFBP-1) appears to be an important modular of the insulin growth factor (IGF) bioactivity in metabolic disease and chronic hypoxia. Treatment of desferrioxamine (Dfo), cobalt, or nickel in HepG2 cells stimulated the expression of IGFBP1 mRNA as hypoxia. However, the presence of ferric ammonium citrate (FAC) in the 1% $O_2$ decreased the upregulation of the IGFBP-1 mRNA expression. In addition, actinomycin D and cycloheximide abolished the increase in the expression of IGFBP-1 mRNA that was induced by Dfo and transition metals (cobalt and nickel). To obtain further information about the putative oxygen sensor, we postulate that putative heme proteins, responsible for the oxygen-sensing process in HepG2 cells, should be sensitive to hypoada. The mechanism of these upregulations of the IGFBP-1 mRNA expression by Dfo and transition metals was investigated by treatment with 2 mM of 4,6-dioxoheptanoic acid (DHA), an inhibitor of heme biosynthesis. The results showed that 1% $O_2$-, Dfo-, cobalt-, or nickel induced IGFBP-1 mRNA expressions in HepG2 cells were all markedly inhibited when the heme synthesis was blocked by DHA. We suggest that the IGFBP-1 mRNA expression in the HepG2 cell is regulated by 1% $O_2$, Dfo, cobalt, or nickel, implicating the involvement of the putative heme-containing oxygensensing molecule.

  • PDF

Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing

  • Jeong-Min Park;Seungji Choi;Dong Kyu Choi;Hyun-Shik Lee;Dong-Hyung Cho;Jungmin Choi;Hong-Yeoul Ryu
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.47-54
    • /
    • 2024
  • In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.

Anti-Obesity Effect of Ethyl Acetate Fraction from 50% Ethanol Extract of Fermented Curcuma longa L. in 3T3-L1 Cells (발효울금 주정추출물부터 분리된 에틸아세테이트 분획물에 대한 3T3-L1 세포에서의 지방 형성 억제 효과)

  • Kim, Jihye;Park, Jeongjin;Jun, Woojin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1681-1687
    • /
    • 2014
  • In the present study, we investigated the effect of ethyl acetate fraction from 50% ethanol extract of fermented Curcuma longa L. (FCEE) on lipid metabolism in 3T3-L1 cells. The safety range of FCEE was up to $300{\mu}g/mL$. Effects of FCEE on lipid accumulation and intracellular triglyceride (TG) content in 3T3-L1 cells were examined by Oil Red O staining and AdipoRed assay. Compared to adipocytes, lipid accumulation and intracellular TG content were significantly reduced by 10.2% and 13.7%, respectively, upon FCEE treatment at a concentration of $200{\mu}g/mL$. Glucose uptake by 3T3-L1 cells was significantly reduced by 36.6% compared to adipocytes at a concentration of $200{\mu}g/mL$. On day 8, free glycerol release into the culture medium was significantly reduced compared to adipocytes at concentrations of 50, 100, and $200{\mu}g/mL$ of FCEE. FCEE significantly stimulated RNA expression of AMP-activated protein kinase (AMPK) and suppressed mRNA expressions of sterol regulatory element-binding protein-1c (SREBP-1c), CCAAT/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), and peroxisome proliferator- activated receptor ${\gamma}$ ($PPAR{\gamma}$) in 3T3-L1 cells. These results suggest that FCEE inhibits adipogenesis through activation of AMPK mRNA expressions and inhibition of SREBP-1c, $C/EBP{\alpha}$, and $PPAR{\gamma}$ mRNA expressions.

Identification and characteristics of DDX3 gene in the earthworm, Perionyx excavatus (팔딱이 지렁이(Perionyx excavatus) DDX3 유전자의 동정 및 특성)

  • Park, Sang Gil;Bae, Yoon-Hwan;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.70-81
    • /
    • 2015
  • Helicases are known to be a proteins that use the chemical energy of NTP binding and hydrolyze to separate the complementary strands of double-stranded nucleic acids to single-stranded nucleic acids. They participate in various cellular metabolism in many organisms. DEAD-box proteins are ATP-dependent RNA helicase that participate in all biochemical steps involving RNA. DEAD-box3 (DDX3) gene is belonging to the DEAD-box family and plays an important role in germ cell development in many organisms including not only vertebrate, but also invertebrate during asexual and sexual reproduction and participates in stem cell differentiation during regeneration. In this study, in order to identify and characterize DDX3 gene in the earthworm, Perionyx excavatus having a powerful regeneration capacity, total RNA was isolated from adult head containing clitellum. Full length of DDX3 gene from P. excavatus, Pe-DDX3, was identified by RT-PCR using the total RNA from head as a template. Pe-DDX3 encoded a putative protein of 607 amino acids and it also has the nine conserved motifs of DEAD-box family, which is characteristic of DEAD-box protein family. It was confirmed that Pe-DDX3 has the nine conserved motifs by the comparison of entire amino acids sequence of Pe-DDX3 with other species of different taxa. Phylogenetic analysis revealed that Pe-DDX3 belongs to a DDX3 (PL10) subgroup of DEAD-box protein family. And it displayed a high homology with PL10a, b from P. dumerilii.