• Title/Summary/Keyword: RMS hazard

Search Result 8, Processing Time 0.026 seconds

Generation of RMS Hazard-Compatible Artificial Earthquake Ground Motions (RMS 가속도에 의한 인공 지진파 생성기법)

  • Kim, Jin-Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • Due to the random nature of earthquake, the definition of the input excitation is one of the major uncertainties in the seismic response analysis. Furthermore, ground motions that correspond to a limited number of design parameters are not unique. Consequently, a brood range of response values can be obtained even with a set of motions, which match the same target parameters. The paper presents a practical probabilistic approach that can be used to systematically model the stochastic nature of seismic loading. The new approach is based on energy-based RMS hazard and takes account for the uncertainties of key ground motion parameters. The simulations indicate that the new RMS procedure is particularly useful for the rigorous probabilistic seismic response analysis, since the procedure is suitable for generation of large number of hazard-compatible motions, unlike the conventional procedure that aim to generate a small number of motions.

Characteristics on Arc Waveform and RMS of Current by Conductive Powder (도전성 분말에 의한 아크전류의 파형 및 실효값 특성)

  • Kim, Doo Hyun;Kang, Yang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.63-68
    • /
    • 2013
  • This paper is aimed to make an analysis on characteristics of the parallel arc waveform and RMS of current at the electrical tracking state by conductive powder. In order to achieve the goal in this paper, field state investigation at metal processing companies in Chung-Nam province area was conducted. With the field state investigation, conductive powder were collected from metal processing companies. By experiment on electrical connector(breaker, connector) over which the conductive powder were scattered, arc waveform and RMS of current were measured. The measured waveform and RMS(root-mean-square) of current were analyzed to describe characteristics and patterns of electrical arc by the conductive powder. It was proved that conductive powder on electrical connector can flow electrical current enough to make electrical fire with high thermal energy. Also the change of sine waveform and RMS of current can be used to find out relationship between electrical fire and fault signal by conductive powder. The results obtained in this paper will be very helpful for the prevention of electrical fires occurred at the metal processing companies.

Reliability Analysis of Seismically Induced Slope Deformations (신뢰성 기법을 이용한 지진으로 인한 사면 변위해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • The paper presents a reliability-based method that can capture the impact of uncertainty of seismic loadings. The proposed method incorporates probabilistic concepts into the classical limit equilibrium and the Newmark-type deformation techniques. The risk of damage is then computed by Monte Carlo simulation. Random process and RMS hazard method are introduced to produce seismic motions and also to use them in the seismic slope analyses. The geotechnical variability and sampling errors are also considered. The results of reliability analyses indicate that in a highly seismically active region, characterization of earthquake hazard is the more critical factor, and characterization of soil properties has a relatively small effect on the computed risk of slope failure and excessive slope deformations. The results can be applicable to both circular and non-circular slip surface failure modes.

Safety Analysis of a Hydrogen Isotopes Process (수소동위원소 공정 안전해석)

  • Chung, Hong-Suk;Kang, Hyun-Goo;Chang, Min-Ho;Cho, Seung-Yon;Kim, Won-Kuk;Nam, Jae-Yeon;Kim, Duk-Jin;Song, Kyu-Min;Paek, Seung-Woo;Koo, Dae-Seo;Chung, Dong-You;Lee, Jeong-Min;Kim, Chang-Shuk;Jung, Ki-Jung;Yun, Sei-Hun
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • A nuclear fusion fuel cycle plant is composed of various subsystems such as a hydrogen isotope storage and delivery system, a tokamak exhaust processing system, and a hydrogen isotope separation system. Korea shares in the construction of the International Thermonuclear Experimental Reactor fuel cycle plant with the EU, Japan and US, and is responsible for the development and supply of the storage and delivery system. We thus present details on the hydrogen isotope process safety. The main safety analysis procedure is to use a hazard and operability study. Nine segments were studied how the plant might deviate from its design purpose. We present a detailed description of the process, examine every part of it to determine how deviations from the design intent can occur and decide whether these deviations can give rise to hazards. We determine possible causes and note protective systems, evaluate the consequences of the deviation, and recommend actions to achieve our safety goal.

Peak Factors for Bridges Subjected to Asynchronous Multiple Earthquake Support Excitations

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Accurate response analysis of long span bridges subjected to seismic excitation is important for earthquake hazard mitigation. In this paper, the performance of a typical four span continuous reinforced concrete bridge model subjected to asynchronous multiple seismic excitations at the supports is investigated in both the time and frequency domains and the results are compared with that from a relevant uniform support excitations. In the time domain analysis, a linear modal superposition approach is used to compute the peak response values. In the frequency domain analysis, linear random vibration theory is used to determine the root mean square response values where the cross correlation effects between the modal and the support excitations on the seismic response of the bridge model are included. From the two sets of results, a practical range of peak factors which are defined to be the ratio of peak and the root mean square responses are suggested for displacements and forces in members. With reliable practical values of peak factors, the frequency domain analysis is preferred for the performance based design of bridges because of the computational advantage and the generality of the results as the time domain analysis only yields results for the specific excitation input.

Analysis of Series Arc-Fault Signals Using Wavelet Transform (웨이블렛 변환을 이용한 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.494-500
    • /
    • 2008
  • This paper presents the analyzed result of the series arc fault current by using the discrete wavelet transform. The series arcing is caused by a loose connection in series with the load circuit. The series arc current is limited to a moderate value by the resistance of the device connected to the circuit, such as an appliance or a lighting system. The amount of energy in the sparks from the series arcing is less than in the case of parallel arcing but only a few amps are enough to be a fire hazard. Therefore, it is hard to detect the distinctive difference between a normal current and a intermittent arc current. This paper, presents the variation of the ratio of peak values and RMS values of the series arc fault current, and proposes the novel series arc fault detecting method by using the discrete wavelet transform. Loads such as a CFL lamp, a vacuum cleaner, a personal computer, and a television, which has the very similar normal current with the arc current, were selected to confirm the novel method.

Slip Movement Simulations of Major Faults Under Very Low Strength

  • Park, Moo-Choon;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.61-75
    • /
    • 2000
  • Through modeling fault network using thin plate finite element technique in the San Andreas Fault system with slip rate over 1mm/year, as well as elevation, heat flow, earthquakes, geodetic data and crustal thickness, we compare the results with velocity boundary conditions of plate based on the NUVEL-1 plate model and the approximation of deformation in the Great Basin region. The frictional and dislocation creep constants of the crust are calculated to reproduce the observed variations in the maximum depth of seismicity which corresponds to the temperature ranging from $350^{\circ}C$ to $410^{\circ}C$. The rheologic constants are defined by the coefficient of friction on faults, and the apparent activation energy for creep in the lower crust. Two parameters above represent systematic variations in three experiments. The pattern of model indicates that the friction coefficient of major faults is 0.17~0.25. we test whether the weakness of faults is uniform or proportional to net slip. The geologic data show a good agreement when fault weakness is a trend of an additional 30% slip dependent weakening of the San Andreas. The results of study suggest that all weakening is slip dependent. The best models can be explained by the available data with RMS mismatch of as little as 3mm/year, so their predictions can be closely related with seismic hazard estimation, at least along faults where no data are available.

  • PDF