• Title/Summary/Keyword: RMS detection

Search Result 131, Processing Time 0.02 seconds

Feasibility Study on Monitoring of Small-Diameter Tap Breakage with AE Sensor in High-Speed Tapping (고속태핑에서 AE센서를 이용한 소구경 탭의 파손감시의 가능성 연구)

  • 이돈진;김선호;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.41-46
    • /
    • 2003
  • This paper deals with the possibility of tap breakage detection by AE sensor. AE signals in the tapping were not seldom generated in low speed but reflected the tapping process exactly in high speed. Using AE raw signals sampled in 500kHz, AE RMS and AE count rate was computed in software. When the converting time of AE RMS is less than 10ms, we could distinguish between normal cutting and tap breakage. And AE count rate was more exact when the converting time is greater than 1ms. When two methods were compared to each other, AE count rate was more accurate.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.

Analysis of Series Arc-Fault Signals Using Wavelet Transform From Non-linear Loads (웨이블렛 변환을 이용한 비선형 부하 전원선에서의 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun;Jang, Mog-Soon;Choi, Won-HO
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1470-1477
    • /
    • 2008
  • In this paper, a new detection method of series arc-fault signals occurring at the wiring of home appliances is proposed. The discrete wavelet transform was used for the numerical analysis of the variation rate in peak, RMS, noise energy, shoulder of the arc-fault current wave. As a results, the arc distinction threshold value of these variation rates was about 0.1 in most cases. The arc-fault current of the loads with the active PFC circuit showed a high rate of variation in noise energy and shoulder, but arc-fault current of the loads without the active PFC circuit showed a high rate of variation in peak and RMS. The arc fault current in resistive loads showed a high rate of variation in shoulder.

A Design of Simple and Precision Direction Finder with a Combination of an Amplitude Measurement and Phase Measurement

  • Lim Joong-Soo
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.35-38
    • /
    • 2005
  • This paper describes a design of simple and precision direction finder that can be adapted to shipboard or mobile vehicles used for Electronic support measure, ELINT and radio signal monitoring systems. The direction finding technology has improved with monolithic integrated circuit, linear array antennas, and interferometer. Interferometer uses the phase-comparison principle and has a good direction finding accuracy but it has an ambiguity problem. We suggest a simple ambiguity solver using phase-comparison technology with amplitude-comparison principle. The direction finding device that has been designed by the suggested method has 0.7 degree RMS error in azimuth angle and 0.6 degree RMS error in elevation angle in 0.5 - 2.0 GHz.

  • PDF

In-process Monitoring of Milling Chatter by Artificial Neural Network (신경회로망 모델을 이용한 밀링채터의 실시간 감시에 대한 연구)

  • Yoon, Sun-Il;Lee, Sang-Seog;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.25-32
    • /
    • 1995
  • In highly automated milling process, in-process monitoring of the malfunction is indispensable to ensure efficient cutting operation. Among many malfunctions in milling process, chatter vibration deteriorates surface finish, tool life and productivity. In this study, the monitoring system of chatter vibration for face milling process is proposed and experimentally estimated. The monitoring system employs two types of sensor such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are extracted in time domain for the input patterns of neural network to reduce time delay in signal processing state. The resultes of experimental evaluation show that the system works well over a wide range of cutting conditions.

  • PDF

Development of a High-Resolution Electrocardiography for the Detection of Late Potentials (Late Potential의 검출을 위한 고해상도 심전계의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.449-458
    • /
    • 1996
  • Most of the conventional electrocardiowaphs foil to detect signals other than P-QRS-T due to the limited SNR and bandwidth. High-resolution electrocardiography(HRECG) provides better SNR and wider bandwidth for the detection of micro-potentials with higher frequency components such as vontricular late potentials(LP). We have developed a HRECG using uncorrected XYZ lead for the detection of LPs. The overall gain of the amplifier is 4000 and the bandwidth is 0.5-300Hz without using 60Hz notch filter. Three 16-bit A/D converters sample X, Y, and Z signals simultaneously with a sampling frequency of 2000Hz. Sampled data are transmitted to a PC via a DMA-controlled, optically-coupled serial communication channel. In order to further reduce the noise, we implemented a signal averaging algorithm that averaged many instances of aligned beats. The beat alignment was carried out through the use of a template matching technique that finds a location maximizing cross-correlation with a given beat tem- plate. Beat alignment error was reduced to $\pm$0.25ms. FIR high-pass filter with cut-off frequency of 40Hz was applied to remove the low frequency components of the averaged X, Y, and Z signals. QRS onset and end point were determined from the vector magnitude of the sigrlaIL and some parameters needed to detect the existence of LP were estimated. The entire system was designed for the easy application of the future research topics including the optimal lead system, filter design, new parameter extraction, etc. In the developed HRECG, without signal averaging, the noise level was less than 5$\mu$V$_rms RTI$. With signal averaging of at least 100 beats, the noise level was reduced to 0.5$\mu$V$_rms RTI$, which is low enough to detect LPs. The developed HRECG will provide a new advanced functionality to interpretive ECG analyzers.

  • PDF

Development of Fault Detection Algorithm on distribution lines using neural network & fuzzy logic (신경 회로망-퍼지로직을 이용한 배전선로 사고 검출 기법의 개발)

  • Choi, J.H.;Jang, S.I.;Eom, J.P.;Park, J.S.;Kim, K.H.;Kim, N.H.;Kang, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1440-1443
    • /
    • 1999
  • This paper proposes fault detection method using a neural network & fuzzy logic on distribution lines. Fault on distribution lines is simulated using EMTP. The pattern of high impedance fault on pebbles, ground and short-circuit fault were take as the learning model. In this paper proposed fault detection method is evaluated on various conditions. The average values after analyzing fault current by FFT of even odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method

  • PDF

Fault Detection of the Machine Tool Gearbox using Acoustic Emission Methodof (음향 방출법에 의한 공작기계 기어상자의 결함 검출)

  • Kim, Jong-Hyeon;Kim, Won-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.154-159
    • /
    • 2012
  • Condition monitoring(CM) is a method based on Non-destructive test(NDT). Therefore, recently many kind of NDT were applied for CM. Acoustic emission(AE) is widely used for the early detection of faults in rotating machinery in these days also. Because its sensitivity is higher than normal accelerometers and it can detect low energy vibration signals. A machine tool consist of many parts such as the bearings, gears, process tools, shaft, hydro-system, and so on. Condition of Every part is connected with product quality finally. To increase the quality of products, condition monitoring of the components of machine tool is done completely. Therefore, in this paper, acoustic emission method is used to detect a machine fault seeded in a gearbox. The AE signals is saved, and power spectrums and feature values, peak value, mean value, RMS, skewness, kurtosis and shape factor, were determined through Matlab.

A High Impedance Fault Detection Algorithm Using Wavelet Transform (Wavelet 변환을 이용한 배전 계통의 고 저항 사고 검출 알고리즘)

  • Nam, S.R.;Kang, Y.C.;Kim, S.S.;Sohn, J.M.;Park, J.K.;Jang, S.I.;Kim, K.H.;Kim, I.D.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.975-978
    • /
    • 1997
  • This Paper presents a high impedance fault (HIF) detection algorithm of distribution systems using wavelet transform. Two HIFs on dry soil and sandy soil were simulated on various load conditions in 22.9 kV distribution systems using EMTP, and the current wavelets were decomposed by wavelet transform. The current root mean square(rms) change, the index change rate and the relative amplitude change were used as the multi-criteria for a HIF detection. The index change rate and the relative amplitude were made using the wavelet coefficients.

  • PDF

A Study of Detection Algorithms and Analysis Series Arc of Quasi-arc Load (유사아크부하의 직렬아크신호 분석 및 검출 알고리즘에 관한 연구)

  • Lim, Jong-Ung;Ju, Jae-Yeon;Kang, Kyoung-Pil;Bang, Sun-Bae;Choe, Gyu-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.81-90
    • /
    • 2014
  • This paper proposes new arc algorithm to detect series quasi-arc. This algorithm analyzes odd and even harmonics until 9th using discrete fourier transform (DFT) and detect series arc comparing RMS values of load current. Resistors, lights, dimmer and vacuum cleaner which can be distinguished linearity load and quasi arc load are adopted to perform experiments. This algorithm is confirmed to emulate arc detecting with measuring current data.