• Title/Summary/Keyword: RMA model

Search Result 102, Processing Time 0.026 seconds

Sensitivity Analysis of Dry/Wet Algorithm for 2-Dimensional Finite Element Analysis (2차원 유한요소해석을 위한 마름/젖음 알고리듬의 민감도 분석)

  • Han, Kun-Yeun;Kim, Sang-Ho;Choi, Seung-Yong;Hwang, Jae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.827-831
    • /
    • 2009
  • Recently, frequency occurring flood and drought has increased the necessity of an effective water resources control and management of river flows. Therefore, the simulation of the flow distribution in natural rivers is great importance to the solution of a wide variety of practical flow problems in water resources engineering. However The serious problem facing two-dimensional hydraulic model is the treatment of wet and dry areas. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method for the purpose of sensitivity analysis. Experimental channel and a variety of channel were performed for model tests. The results were compared with those of the observation data and simulation data of existing model. The RMA-2 model displayed reasonable flow distribution compare to the observation data and simulation data of existing model in dry area for application of natural river flow. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

  • PDF

Parameter Assessment for the Simulation of Drying/Wetting in Finite Element Analysis in River and Wetland (하천 및 습지에서 유한요소 해석시 마름/젖음 처리를 위한 매개변수 평가)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun;Kim, Sang Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.331-346
    • /
    • 2009
  • The serious problem facing two-dimensional finite element hydraulic model is the treatment of wet and dry areas. This situation is encountered in most practical river and coastal engineering problems, such as flood propagation, dam break analysis and so on. Especially, dry areas result in mathematical complications and require special treatment. The objective of this study is to investigate the wet and dry parameters that have direct relevance to model performance in situations where inundation of initially dry areas occurs. Several numerical simulations were carried out, which examined the performance of the marsh porosity method of RMA-2 model to investigate for application of parameters. Experimental channel with partly dry side slopes, straight channel with irregular geometry and Han river were performed for tests. As a result of this study, effectively applied marsh porosity method provide a reliable results for flow distribution of wet and dry area, it could be further developed to basis for extending to water quality and sediment transport analysis.

Effects of Operation of the Kyeongpo Retarding Basin on Flood Water Levelin Kyeongpo Lake (경포유수지 운영이 경포호의 홍수위에 미치는 영향)

  • Park, Sang Doeg;Lee, Seungkyu;Shin, Seung Sook;Yoon, Byung Man
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Effects of the design flood share of the Kyeongpo retarding basin, which has a function for flood control of the Kyeongpo river assigned to the Kyeongpo prickly water lily wetland, on the Kyeongpo lake and the downstream of Kyeongpo river were analyzed on the bassis of the hydraulic experiments and the numerical simulations using RMA-2 model. Reproducing a complex water flow system of the area of Kyeongpo lake, the unsteady flow simulations were performed. The data obtained in hydraulic experiments were used to determine parameters of the numerical model which simulated the flows for various flood scenarios in the downstream area of Kyeongpo river. With increasing the design flood share rates in the retarding basin, the water level was increased in the lake and is decreased in the river. The characteristics of flood flow interaction between Kyeongpo river and Kyeongpo lake were understood. These results may be used to management the Kyeongpo lake during flood season.

Hydraulic Analysis Using a Two-Dimensional Model(I) : Flow Analysis around Bridge Piers with Pier Shapes (2차원 모형을 이용한 수리해석(I) : 교각형상별 주변부 흐름해석)

  • Kim, Eung-seok;Lee, Seung-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4936-4941
    • /
    • 2015
  • This study(I) has analyzed hydraulic characteristics with pier shapes by the bridge construction. The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. One-dimensional model(HEC-RAS) and two-dimensional model (RMA-2) were employed to analyze hydraulic characteristics around bridge piers. Square and rhombus shapes of piers showed velocity vectors in the upstream direction, which has a significant impact on the river bed changes by erosion and sediment transport around the piers. The flow characteristics of the oval type pier was most similar to that of no-pier situation almost without disrupting the river flow. This analysis can help to select pier types in the new bridge construction for the future.

Prediction of River Bed Change due to Yongdam Dam Discharge (용담댐 방류에 따른 하상변동 예측)

  • Kim, Young-Bok;Jung, Seung-Kwon;Shim, Soon-Bo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.69-81
    • /
    • 2006
  • The purpose of this study is to identify the downstream influences due to the dam discharge by using 2-dimensional model, SMS(Surface water Modeling System). RMA-2 and SED-2D in SMS were applied to Yongdam multipurpose dam watershed located in Gum river basin. Through the simulation, erosion and deposit quantitative analysis of sinuous channels and scour pattern analysis of bridges have been done. A differences erosion depths between deposit are simulated as $-102.4 mm{\sim}54.2 mm$ at No.176(1.4 km) and $-104.1 mm{\sim}28.9 mm$ at No.146(7.4 km), sinuous channel. The river bed at Kamdong bridge in straight channal is simulated as uniform erosion. However, the river bed at Dumdul bridge in sinuous channal has been shown as different erosion depths at each sides. Consequently, the parts that could not be simulated on the existing 1-dimensional model, can be improved results by using a 2-dimensional model, about weakness points for hydraulic modeling such as extreme bend, tributary confluence.

Two - Dimensional analysis in Dam Downstream due Spill Condition (방류조건에 따른 댐 하류부의 2차원 수치해석)

  • Lee, Jong-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.911-918
    • /
    • 2013
  • Two - dimensional numerical analysis model(RMA2), is mainly applied to analyze the flood water levels, velocities and change of river bed at the downstream of Dam. The analysis result be able to influence to Gwangchon bridge from Juam dam, freeboard be insufficient 0.7m to left bank 300m section of dam downstream. Bank overflow is appear to all section of Bosung river to PMF spill condition. Inundated district is appear to river confluence to 200year frequency and is expand to bank overflow to PMF spill condition. Velocity in the channel was simulated high velocity to the bridge and narrow reach and appear to riverbed degradation.

Analysis of Characteristics for a Dividing Flow in Open Channels (개수로 분류흐름에서의 특성분석)

  • Park, Seong-Soo;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • The dividing flow in an open channel has a number of distinctive characteristics. One of these is that the separation zone interacts with a secondary motion along the inner wall of a branch channel, generating sediment accumulation. To investigate this phenomenon, a two-dimensional numerical model based on the shallow-water equations, RMA2, which calculates water surface elevations and horizontal-velocity components, was used to analyze the dividing flow. The obtained numerical results fully coincide with the laboratory measurements reported by Hsu et al.(2002). For the analysis of the numerical results, a separation zone-discharge rate relationship was proposed. To reduce the size of a separation zone, the topographies of diagonal and curved edges were proposed, smoothly connecting the upstream corner to branch channel.

2-D Analysis of the Low Flow Variation Around the Bridge Pier (교각 주변의 저수류 (低水流) 흐름 변화에 대한 2차원 분석)

  • Yeon, In-Sung;Lee, Jai-Kyung;Yeon, Gyu-Bang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2009
  • The flow is changed by the structure which goes across the river. The structure with debris causes high water level and overflow. The changed flow, which caused by pier and stream characteristics like velocity and slope, was analysed by 2D model. After rainfall, the influences of increased discharge were evaluated. Velocity was simulated in the channel by SMS (Surface water Modeling System) using RMA2, and high velocity values were found in the steep and narrow reach. Highest velocity value around piers was showed in the middle of space between two piers. The increased discharge due to rainfall increases velocity and changes flow contour considerably.

Study of Superelevation of Ichon-Banpo Bend Flow in the Han River (한강 이촌-반포 만곡부의 편수위 연구)

  • Lee, Jong-Kyu;Kim, Joo-Young;Park, Hyun-Jin;Kang, Ji-Ye
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.810-814
    • /
    • 2009
  • Two dimensional steady and unsteady numerical models are applied to bend reaches of the Lower Han River and the superelevation at the Ichon-Banpo bend area of Han River was observed. The flow characteristics in the meandering river are complicated due to the effects of the centrifugal force. The centrifugal force makes the outside water surface level increase and the outside velocity decrease. To study this complex flow studying two dimensional flow is important and useful to design flood control countermeasures, the analysis of sedimentation and the site selection of intake structures. Especially, the superelevation between inside and outside of the bend should be considered to determine the height of embankment. In this study, the water surface elevations in both bank sides of the bend were measured in two reaches during floods in 2007 and 2008. And then the two-dimensional simulation using RMA-2 model was carried out. The upstream and downstream boundary conditions on bend reaches were determined by FLDWAV which is one-dimensional unsteady model. Finally, the observed data are compared with simulation results and the results of the several superelevation formulas, and the flow characteristics of the bend are discussed.

  • PDF

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.