• Title/Summary/Keyword: RMA model

Search Result 102, Processing Time 0.025 seconds

An Assessment of Flow Characteristic and Riverbed Change by Construction of Hydraulic Structure (수리구조물 설치에 따른 흐름특성 및 하상변동 연구)

  • Kwak, Jaewon;Jin, Hwansuk;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.542-550
    • /
    • 2017
  • The estimations of flow characteristics and river-bed erosion or sedimentation are very important for hydraulic structure design, floodplain management, and especially, river management. The objective of the study is therefore to estimate the change of flow characteristics and river-bed change due to a hydraulic structure construction. With 11.65 km study area of the Geum River which are located in downstream of Daecheong Dam, flow characteristics and river-bed change were estimated based on the RMA2 and SED2D model. As the result of the study, the increase of river-bed sedimentation in upstream and river-bed erosion in downstream were occurred by the construction of hydraulic structure.

Spillway Design by Using Hydraulic and Numerical Model Experiment - Case Study of HwaBuk Multipurpose Dam (수리 및 수치모형실험을 이용한 여수로 설계 - 화북다목적댐)

  • Kim, Dae-Geun;Choi, Ji-Woong;Kim, Chang-Si;Lee, Ji-Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.179-188
    • /
    • 2005
  • This study on the HwaBuk Multipurpose Dam showed that two- and three- dimensional numerical model experiments, as well as hydraulic model experiments, can be useful analysis tools for engineers. A commercially available RMA2, which solves the shallow water equations, and FLOW-3D, which solves the Reynolds averaged Navier-Stokes equations, were used to simulate the hydraulic model setup. Numerical simulation results on the following were compared with the hydraulic model results: the flow in the reservoir basin and the approaching channel; the discharge in the overflow weir; the water surface profiles in the rollway, chute, and stilling basin; and the pressure distributions in the rollway. It was shown that there is a reasonably good agreement between the numerical model and the hydraulic model for the most of computations. There were, however, some differences between the numerical simulation results and hydraulic model results for the hydraulic jump in the stilling basin because of air entrainment effect.

Comparative Study for Pollutant Transport and Diffusion Model (오염물 이송 및 확산 거동 해석모형의 특성비교연구)

  • Jung, Sung-Tae;Lyu, Si-Wan;Kim, Young-Do;Seo, Il-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1407-1411
    • /
    • 2007
  • 현재까지 우리나라에서 주로 사용되고 있는 2차원 흐름 해석모형은 미연방 도로국(U.S. Federal Highway Administration)과 연계하여 Brigham Young University에서 개발된 SMS(Surface-Water Modeling System) 모형이다. SMS모형 중 이송 확산 모형으로는 RMA-4가 포함되나 이 모형은 최신 수치기법을 반영하지 못하는 등의 문제점들로 인해 실제 물리적 현상 모의에 있어서 한계를 가지고 있다. 따라서 물리적 현상에 대한 적절한 모의를 위한 개선과정을 통하여 RAM4가 개발되었다. 본 연구에서는 현장실측 자료를 바탕으로 RMA-4와의 모의결과 비교를 통하여 오염 확산 해석모형인 RAM4의 적용성을 검증하고자 하였다. RAM4와 RMA-4 모의에 있어서 격자구성과 경계조건은 동일하게 설정하였으며, 유량조건은 평수량과 갈수량으로 선정하였다. 각각의 유량시 수위조건이 틀려지므로 각 유량조건에 대한 격자구성을 달리하였다. 모의구간은 낙동강 본류의 수산대교에서 삼랑진 철교까지의 약 13km 구간을 대상으로 하였다. 모의 구간내에는 밀양-하남 하수처리장이 상류 좌안측에 위치하고 있고, 만곡, 단면의 축소 및 확대, 하중도, 합류 등의 지형학적 특징들이 비교적 짧은 구간에 나타나고 있어 모형의 검증에 적합하다고 판단된다.

  • PDF

Analysis Saltwater Intrusion using 2-D & 3-D Numerical Model in Seomjin River Estuary (2차원 및 3차원 수치모형을 이용한 섬진강 하구부 염수침입 분석)

  • Jung, Sung-Tae;Noh, Joon-Woo;Hur, Young-Teck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.785-790
    • /
    • 2009
  • 섬진강 하구역에서 모래채취로 인한 지형변화와, 댐 및 취수장의 증가로 인한 유량감소로 인해 해수의 역류범위가 증가하여 참게나 재첩과 같은 경제성 어종이 감소하고, 염분으로 인한 농업용수사용 불가와 같은 염수피해가 늘어가고 있다. 따라서 본 연구에서는 2차원 수치모형인 RMA-2, 4와 3차원 수치모형인 EFDC를 각각 이용하여 밀물 시 염수가 전파되는 범위 및 염수농도를 모의하고, 동시에 2차원 모형과 3차원 모형을 비교하여 모의목적에 대한 각 모형의 장 단점을 알아보았다. 모의결과를 살펴보면 최저 수위 시 두 모형이 큰 차이를 보이는 것을 볼 수 있었으며, EFDC가 상류쪽으로 더 길게 염수침입이 일어나는 것을 볼 수 있었다.

  • PDF

Verification of Two Dimensional Hydrodynamic Model Using Velocity Data from Aerial Photo Analysis (항공사진분석 자료를 이용한 2차원 하천흐름 해석모형의 검증)

  • Seo, Il Won;Kim, Sung Eun;Minoura, Yasuhisa;Ishikawa, Tadaharu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.515-522
    • /
    • 2011
  • The hydrodynamic models are widely used in the research for analysis of flow characteristics and design of hydraulic structure and river channel. These models need to be calibrated with observed data. But, there are few field data of two-dimensional flow velocity in flood because the direct measurement of the flood flow velocity are very dangerous. For this reason the results of two-dimensional numerical models are usually calibrated and verified with only a few observed data. Moreover, the verification of numerical models for the design flood is usually carried out using the result of one-dimensional model, HEC-RAS. In this study, using the flow velocity profile extracted from the aerial photos of a flood of the Tone River in Japan, two-dimensional numerical models, RAM2 in RAMS, RMA2 in SMS, and one-dimensional numerical model, HEC-RAS which are most widely used in research and design work are verified and the validity for verification of two-dimensional models with HEC-RAS is reviewed. The results showed that the water surface elevation of HEC-RAS, RAM2 and RMA2 models have similar results with observed data. But, the velocity results of RAM2 and RMA2 models in the floodplain have some difference with the velocity from aerial photo analysis. And the velocity result of HEC-RAS has big difference with the sectional averaged value of velocity from aerial photo analysis.

Comparative analysis of methods for sediment level estimation in dam reservoir (댐 저수지의 퇴사위 결정 방법에 관한 연구)

  • Joo, Hong Jun;Kim, Hung Soo;Cho, Woon ki;Kwak, Jae won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • This study examined how to determine the optimal sediment level in dam reservoir for efficient plan and operation of dam. Currently, Korea is applying a horizontally accumulated method for sediment level estimation for the safety design of dam and so the method estimated relatively higher level than others. However, the sediment level of dam reservoir should be accurately estimated because it is an important factor in assessing life cycle of a dam. The sediment level in dam reservoir can be determined by SED-2D model linked with RMA-2, horizontally accumulated method, area increment method, and empirical area reduction method. The estimated sediment level from each method was compared with the observed sediment level measured in 2007 in Imha dam reservoir, Korea and then the optimal method was determined. Also, the future sediment level was predicted by each method for the future trend analysis of sediment level. As the results, the most accurate sediment level was estimated by the empirical area reduction method and the future trend of sediment level variation followed the past trend. Therefore, we have found that the empirical area reduction method is a proper one for more accurate estimation of sediment level and it can be validated by the results from a numerical model of SED-2D linked with RMA-2 model.

Development of Grid Reconstruction Method to Simulate Drying/Wetting in Natural Rivers (II): Model Application and Comparison (자연하천에서 마름/젖음 처리를 위한 격자재구성 기법의 개발 (II): 모형의 적용 및 비교.검토)

  • Choi, Seung-Yong;Kim, Sang-Ho;Hwang, Jae-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.989-1004
    • /
    • 2009
  • The objective of this study is to examine validation of Grid Reconstruction Method, which is developed to simulate drying/wetting in complex natural rivers with wetting and drying domain areas. To verify application of the developed model, the model was applied to natural rivers with wetting and drying domain areas such as Han river and Nakdong river. The simulation results have shown good agreements with observed data and the results for the developed model were more accurate and improved stability of numerical computation than those of RMA-2 model. If the analysis of contaminant advection-diffusion and sediment transport are performed with the study results, the results can be effectively applied to river flow analysis and ecological hydraulics.

Prediction of Sediment distribution in Reservoir Using 2-D Numerical Model (2차원 수치모형을 이용한 저수지 내 퇴사분포 예측)

  • Kim, Ki Chul;Kim, Jong Hae;Chong, Koo-Yol;Kim, Hyeon Sik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.729-742
    • /
    • 2014
  • This study predicted long-term sediment distribution for 76 years by using RMA-2 which is two-dimensional numerical model and SED2D which is the sediment transport model to quantitatively analyze sediment distribution in the reservoir based on sediment intrusion and efficiently manage the reservoir. For water level-discharge-sediment data required in boundary conditions of the model, real-time data measured by the Korea Water Resources Corporation were used. The sediment input data was calculated using K-DRUM model. Sedimentation depth was compared with results of model by collecting cross-section core in the reservoir during the dry season. As the result of validation, the sediment depth in the reservoir was similar to actually measured value. For prediction of long-term sediment distribution, terrain data measured in 2012 was used as starting crosssection and simulations for 76 years until 2088 were made. As the results of simulations, sediment distributions of 1.63~1.26 m and 1.45~0.007 m were shown in upstream and downstream of Hapcheon Dam, respectively.

A Study on Taehwa River Red Tide Solution through Stream Flow (유수소통을 통한 태화강 적조해결 방안 연구)

  • Cho, Hong-Je;Yoon, Sung-Kyu
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.363-375
    • /
    • 2011
  • Recently, Water quiality of urban river largely have gotten better by virtue of sewer pipe laying and sewage treatment plants construction. or the various contaminants which is flowed in into river have generated underwater ecosystem disturbance and red tide by lack of sewage and waste water disposal facilities. With tidal river, taehwa river of ulsan metropolitan city has large river width and gradual stream bed gradient at the dry and storage period. Moreover, the flow is paralyzed due to the bridge pier protection work, consist of the mat foundation which is about 1.2km from two bridge and the contaminant is accumulated. it is caused by of the red tide generated from the several years or it activates. In this study, When flow area is largest by changing independent footing of bridge pier of two bridges and using RMA2 model, we hydraulically analyzed a variable breadth of velocity and discharge. Consequently, flow rate increased the maximum 103%, discharge was exposed to increase the maximum 61%. Directly this cannot extinguish the red tide but suppresses the red tide occurrence or can reduce. And it is determined to prevent the depositioning of the contaminant and can control fundamentally the red tide occurrence cause.

Analysis of Hydraulic Impacts due to Sudden Enlargement of Kyungpo-cheon River Channel (경포천 하도 급확대에 따른 수리학적 영향분석)

  • Choi, Jong-Ho;Jung, Tae-Jung;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • The enlargement and reduction of river channels can not only change the flow of water but also alter sedimentation patterns, thus hindering smooth flood conveyance. Accordingly, this study aims to analyze the effects of the sudden enlargement of river channels on changes in the riverbed and river flow. For this purpose, as part of the "Hometown River" Construction Project, this study examined the local river Kyungpo-cheon, which a section of the river channel was widened by at least two- to three-fold, using RMA-2 and SED-2D models to simulate the changes in flow characteristics and riverbed variation due to the widening of the channel. The results of the study indicated that widening the Kyungpo -cheon river channel secured its dimensional stability in comparison to before widening. however, due to a flood frequency of more than once per year, future maintenance and management will be costly and time-consuming.