• Title/Summary/Keyword: RLS method

Search Result 141, Processing Time 0.026 seconds

A New Method for Antimicrobial Susceptibility Testing of Vitro-cultured Bacteria by Means of Resonance Light Scattering Technique

  • Shi, Yu-Jun;Chen, Jun;Xu, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • A new method for antimicrobial susceptibility testing of vitro-cultured bacteria on an ordinary fluorescence spectrometer was developed. The viable bacteria reduced 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to produce insoluble particles that displayed intense resonance scattering light. The assay showed a linear relationship between the number of viable bacteria and the intensity of resonance scattering light. Dead bacteria were unable to reduce MTT. Methicillin-resistant Staphylococcus aureus exposed to flavonoids from Marchantia convoluta showed a flavonoids concentration-dependent inhibition of the ability to reduce MTT. In the assay, less than 12 h was required to attain susceptibility results and fewer bacteria were utilized than in traditional methods. The RLS technique could, in combination with the MTT assay, be a rapid and sensitive measuring method to determine the in vitro activity of new antimicrobials.

Interference Cancellation for Wireless LAN Systems Using Full Duplex Communications (전이중 통신 방식을 사용하는 무선랜을 위한 간섭 제거 기법)

  • Han, Suyong;Song, Choonggeun;Choi, Jihoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2353-2362
    • /
    • 2015
  • In this paper, we employ the single channel full duplex radio for wireless local area network (WLAN) systems, and design digital interference cancellers using adaptive signal processing. When the full duplex scheme is used for WLAN systems with multiple transmit and receive antennas, some interference is caused through the feedback of transmit signals from multiple antennas. To remove the feedback interference, we derive the least mean square (LMS), normalized LMS (NLMS), and recursive least squares (RLS) algorithms based on adaptive signal processing techniques. In addition, we analyze the theoretical convergence of the proposed LMS and RLS methods. The channel capacity of full duplex radios increases by two times than that of half duplex radios, when the packet error rate (PER) performances for the two systems are identical. Through numerical simulations in WLAN systems, it is shown that the full duplex method with the proposed interference cancellers has a similar PER performance with the conventional half duplex transmission scheme.

Design of Speed Controller for an Induction Motor with Inertia Variation

  • Sin E. C.;Kong B. G.;Kim J. S.;Yoo J. Y.;Park T. S.;Lee J. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.374-379
    • /
    • 2001
  • In this paper, a novel design algorithm of speed controller for an Induction motor with the inertia variation is proposed. The main contribution of our work is a very robust, reliable and stable procedure for setting of the PI gains against the specified range of the inertia variation of an induction motor using Kharitonovs robust control theory. Therefore, the basic segment of controller design, the variation of induction motor inertia is estimated by the RLS (Recursive least square) method. PI based speed controller is widely used in industrial application for its simple structure and reliable performance. In addition the Kharitonov robust control theory is used for verification stability of closed-loop transfer function. The performance of this proposed design method is proved by digital simulation and experimentation with high performance DSP based induction motor driving system.

  • PDF

Fuzzy-Model-Based Kalman Filter for Radar Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.311-314
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF. To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKP uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

A Study on the Design of Excitation Controller using Self Tuning Adaptive Control (자기동조 적응제어를 이용한 여자제어기 설계에 관한 연구)

  • Yoo, Hyun-Ho;Lee, Sang-Keun;Kim, Joon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.375-378
    • /
    • 1991
  • This paper presents a design method of synchronous generator excitation controller using self-tuning PID algorithm. Controller parameter is determined by using adaptive control theory in order to maintain optimal operation of generator under the various operating conditions. To determine the optimal parameter of controller. minimum variance algorithm using the recursive leastsquare(RLS) indentification method is adopted and the difference between the speed deviation with weighted factor and voltage deviation is used as the input signal of adaptive controller, which provides good damping and conversion characteristics. The results tested on a single machine infinite bus system verify that the proposed controller has better dynamic performances than conventional controller.

  • PDF

The Design of Fuzzy-Neural Networks using FCM Algorithms (FCM 알고리즘을 이용한 퍼지-뉴럴 네트워크 설계)

  • Yoon, Ki-Chan;Park, Byoung-Jun;Oh, Sung-Kwun;Lee, Sung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.803-805
    • /
    • 2000
  • In this paper, we propose fuzzy-neural Networks(FNN) which is useful for identification algorithms. The proposed FNN model consists of two steps: the first step, which determines premise and consequent parameters approximately using FCM_RI method, the second step, which adjusts the premise and consequent parameters more precisely by gradient descent algorithm. The FCM_RI algorithm consists FCM clustering algorithm and Recursive least squared(RLS) method, this divides the input space more efficiently than convention methods by taking into consideration correlations between components of sample data. To evaluate the performance of the proposed FNN model, we use the time series data for gas furnace.

  • PDF

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.492-501
    • /
    • 2018
  • In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.

Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm (비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.551-551
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

  • PDF