• Title/Summary/Keyword: RLGS

Search Result 3, Processing Time 0.019 seconds

Cloning of Notl-linked DNA Detected by Restriction Landmark Genomic Scanning of Human Genome

  • Kim Jeong-Hwan;Lee Kyung-Tae;Kim Hyung-Chul;Yang Jin-Ok;Hahn Yoon-Soo;Kim Sang-Soo;Kim Seon-Young;Yoo Hyang-Sook;Kim Yong-Sung
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Epigenetic alterations are common features of human solid tumors, though global DNA methylation has been difficult to assess. Restriction Landmark Genomic Scanning (RLGS) is one of technology to examine epigenetic alterations at several thousand Notl sites of promoter regions in tumor genome. To assess sequence information for Notl sequences in RLGS gel, we cloned 1,161 unique Notl-linked clones, compromising about 60% of the spots in the soluble region of RLGS profile, and performed BLAT searches on the UCSC genome server, May 2004 Freeze. 1,023 (88%) unique sequences were matched to the CpG islands of human genome showing a large bias of RLGS toward identifying potential genes or CpG islands. The cloned Notl-loci had a high frequency (71%) of occurrence within CpG islands near the 5' ends of known genes rather than within CpG islands near the 3' ends or intragenic regions, making RLGS a potent tool for the identification of gene-associated methylation events. By mixing RLGS gels with all Notl-linked clones, we addressed 151 Notl sequences onto a standard RLGS gel and compared them with previous reports from several types of tumors. We hope our sequence information will be useful to identify novel epigenetic targets in any types of tumor genome.

Analysis of receptor like kinase (RLK) gene to stress in rice (Oryza sativa L.) using real-time PCR (Real-time PCR을 이용한 스트레스에 따른 벼의 Receptor like kinase (RLK) 유전자의 발현 변화 분석)

  • Kang, Min-Hee;Kim, Il-Wook;Han, Sang-Hoon;Yun, Choong-Hyo;Yoon, Byoung-Su
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.281-290
    • /
    • 2008
  • In plant, Receptor-like kinases (RLKs) are protein family, though its function is not yet understood, consisted of a predicted signal sequence, single transmembrane region, and cytoplasmic kinase domain. RLKs are involved in hormonal response pathways, cell differentiation, plant growth and development, self-incompatibility, and symbiont and pathogen recognition. In this study, expression levels of RLG1, RLG5, RLG6, RLG#6, RLG8, RLG10, RLG17, RLG18 and RLG20 were analyzed by Real-time PCR, when rice (Oryzae sativa) was treated abiotic stress. The expression levels of all RLGs were compared each other by analyzed value of threshold cycles ($C_T$). Consequently, RLGs were suppressed by NaCl as salinity stress, and expression of each RLK genes were showed difference treated salicylic acid and wound, respectively. However, All RLGs were induced under low temperature condition. Therefore, our results indicate protection-function of RLK genes to be an early response of rice against cold weather.

Effects of Accelerometer Signal Processing Errors on Inertial Navigation Systems (가속도계 신호 처리 오차의 관성항법장치 영향 분석)

  • Sung, Chang-Ky;Lee, Tae-Gyoo;Lee, Jung-Shin;Park, Jai-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2006
  • Strapdown Inertial navigation systems consist of an inertial sensor assembly(ISA), electronic modules to process sensor data, and a navigation computer to calculate attitude, velocity and position. In the ISA, most gryoscopes such as RLGs and FOGs, have digital output, but typical accelerometers use current as an analog output. For a high precision inertial navigation system, sufficient stability and resolution of the accelerometer board converting the analog accelerometer output into digital data needs to be guaranteed. To achieve this precision, the asymmetric error and A/D reset scale error of the accelerometer board must be properly compensated. If the relation between the acceleration error and the errors of boards are exactly known, the compensation and estimation techniques for the errors may be well developed. However, the A/D Reset scale error consists of a pulse-train type term with a period inversely proportional to an input acceleration additional to a proportional term, which makes it difficult to estimate. In this paper, the effects on the acceleration output for auto-pilot situations and the effects of A/D reset scale errors during horizontal alignment are qualitatively analyzed. The result can be applied to the development of the real-time compensation technique for A/D reset scale error and the derivation of the design parameters for accelerometer board.