• 제목/요약/키워드: RILs

검색결과 63건 처리시간 0.022초

Selective Allele Stacking of a Novel Quantitative Trait Locus Facilitates the Enhancement of Seed Epicatechin Contents in Soybean (Glycine max (L.) Merr.)

  • Sewon Park;Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.27-27
    • /
    • 2022
  • (-)-Epicatechin (EC), a primary form of flavan-3ol and a building block of proanthocyanidins, has health benefits as it is a potent antioxidant. So far, no quantitative trait loci (QTLs) associated with EC have yet been identified in soybean. In this study, QTLs for EC and hilum color were identified in recombinant inbred lines (RILs) derived from the varieties Jinpung and IT109098 using high-resolution single nucleotide polymorphism linkage mapping. This revealed two major QTLs for EC content, qEC06 and qEC08. qEC06 spanned the T Locus encoding flavonoid 3'-hydroxylase. qEC08, located near the I locus on Chr08, was also a major QTL for hilum color; however, allelic stacking of qEC08 and I revealed no relationship between I and EC content. RILs with IT 109098 alleles at both qEC06 and qEC08 had higher EC content than other lines. These results will enable the production of soybean varieties with high EC content via marker-assisted selection.

  • PDF

Fine Mapping of the Rice Bph1 Gene, which Confers Resistance to the Brown Planthopper (Nilaparvata lugens Stal), and Development of STS Markers for Marker-assisted Selection

  • Cha, Young-Soon;Ji, Hyeonso;Yun, Doh-Won;Ahn, Byoung-Ohg;Lee, Myung Chul;Suh, Seok-Cheol;Lee, Chun Seok;Ahn, Eok Keun;Jeon, Yong-Hee;Jin, Il-Doo;Sohn, Jae-Keun;Koh, Hee-Jong;Eun, Moo-Young
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.146-151
    • /
    • 2008
  • The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.

Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis

  • Khaleda, Laila;Park, Hee Jin;Yun, Dae-Jin;Jeon, Jong-Rok;Kim, Min Gab;Cha, Joon-Yung;Kim, Woe-Yeon
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.966-975
    • /
    • 2017
  • Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY $K^+$ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of $Na^+$ in roots up to the elongation zone and caused the reabsorption of $Na^+$ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

밀양23호와 기호벼 교잡 재조합자식계통(RILs)의 품질관련 특성 변이 (Variability of Quality Related Characters in the Recombinant Inbred Lines from Milyang 23 and Gihobyeo)

  • 강현중;김영두;김현순;이영태;은무영
    • 한국작물학회지
    • /
    • 제51권spc1호
    • /
    • pp.58-66
    • /
    • 2006
  • 통일형인 밀양23호와 자포니카인 기호벼를 교잡한 재조합자식계통을 대상으로 품질관련 특성 변이를 살펴본 결과 공시계통들에 대한 품질 관련 형질들의 변이 분포는 매우 폭 넓고 다양했으며 대부분의 형질에서 연속적인 정규분포를 보였다. 조사된 형질간의 상관관계는 립의 두께에 대하여 립폭, 심백과 복백은 고도의 정의 상관관계를 나타냈으나 심백과 알카러 붕괴도는 고도의 부의 상관관계를 보였다. 단백질 함량과는 아밀로스, Mg/K 비율에서 고도의 부의 상관을 나타냈으며, K와 지방 함량과는 고도의 정의 상관을 보였다. 밥의 물리성에서는 딱딱한 정도를 나타내는 경도와 부착성, 탄력성, 검성, 저작성에서 고도의 정의 상관을 보였다.

Identification of SNPs tightly linked to the QTL for pod shattering in soybean[Glycine max (L.) Merr.]

  • Kim, Kyung-Ryun;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Moon, Jung-Kyung;Ha, Bo-Keun;Jeong, Soon-Chun;Kim, Namshin;Kang, Sungtaeg
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.146-146
    • /
    • 2017
  • The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom(R) SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPswere strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.

  • PDF