• Title/Summary/Keyword: RGB-D video

Search Result 34, Processing Time 0.024 seconds

Development and Performance Evaluation of an Image Detection System for Efficient 4D Images (효율적인 4D 영상을 위한 영상 검출 시스템 개발 및 성능평가)

  • Cho, Kyoung-Woo;Liu, Ze-Qi;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.792-797
    • /
    • 2013
  • 4D film is just a film that made by adding some physical effects to 3D film or general film. In order to provide physical effects to the audience, the data that make the physical effect must be added to each frames. In this paper, we proposed a video detection system that can efficiently provide physical effects by assessing the present situation such as explosion scene, snowing scene. The proposed video detection system contains an algorithm for fire detection by using R color and $C_r$ value, and also an algorithm for snow detection by using RGB color model. The system constitutes in a MCU that from 8051 family. In the performance evaluations, the result shows that 91% of detection rate in case of fire and 25% of false detection rate in case of snow. Also the system is capable of providing physical effects automatically.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.

Real-Virtual Fusion Hologram Generation System using RGB-Depth Camera (RGB-Depth 카메라를 이용한 현실-가상 융합 홀로그램 생성 시스템)

  • Song, Joongseok;Park, Jungsik;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.866-876
    • /
    • 2014
  • Generating of digital hologram of video contents with computer graphics(CG) requires natural fusion of 3D information between real and virtual. In this paper, we propose the system which can fuse real-virtual 3D information naturally and fast generate the digital hologram of fused results using multiple-GPUs based computer-generated-hologram(CGH) computing part. The system calculates camera projection matrix of RGB-Depth camera, and estimates the 3D information of virtual object. The 3D information of virtual object from projection matrix and real space are transmitted to Z buffer, which can fuse the 3D information, naturally. The fused result in Z buffer is transmitted to multiple-GPUs based CGH computing part. In this part, the digital hologram of fused result can be calculated fast. In experiment, the 3D information of virtual object from proposed system has the mean relative error(MRE) about 0.5138% in relation to real 3D information. In other words, it has the about 99% high-accuracy. In addition, we verify that proposed system can fast generate the digital hologram of fused result by using multiple GPUs based CGH calculation.

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

A LabVIEW-based Video Dehazing using Dark Channel Prior (Dark Channel Prior을 이용한 LabVIEW 기반의 동영상 안개제거)

  • Roh, Chang Su;Kim, Yeon Gyo;Chong, Ui Pil
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • LabVIEW coding for video dehazing was developed. The dark channel prior proposed by K. He was applied to remove fog based on a single image, and K. B. Gibson's median dark channel prior was applied, and implemented in LabVIEW. In other words, we improved the image processing speed by converting the existing fog removal algorithm, dark channel prior, to the LabVIEW system. As a result, we have developed a real-time fog removal system that can be commercialized. Although the existing algorithm has been utilized, since the performance has been verified real - time, it will be highly applicable in academic and industrial fields. In addition, fog removal is performed not only in the entire image but also in the selected area of the partial region. As an application example, we have developed a system that acquires clear video from the long distance by connecting a laptop equipped with LabVIEW SW that was developed in this paper to a 100~300 times zoom telescope.

Development of 3D Holographic Multi-vision applying Wi-Fi Interlocking Technology

  • Park, Myeong-Chul;Kim, Soon-Hee;Hur, Hwa-La
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.47-53
    • /
    • 2021
  • In this paper, we propose a multi-vision based hologram display to improve the limited viewing angle problem of a single fan hologram display. Existing single fan type displays have a narrow viewing angle. And when the length of the fan becomes longer, there is a problem of low resolution. Also, it is difficult to change data due to the use of the SD card. So, we want to implement a dedicated app to transmit data via Wi-Fi. In this paper, we designed and implemented a display consisting of 3 REG LED fans. As a result of video transmission using the app, it was confirmed that it can be used for commercial purposes such as advertisements and demonstrations. The results of this study are thought to be of great help in the popularization of multi-vision holograms.

Designing a 3D-CNN for Non-Contact PPG Signal Acquisition Based on Video Imaging (영상기반 비접촉식 PPG 신호 취득을 위한 3D-CNN 설계)

  • Tae-Wan Kim;Chan-Uk ,Yeom;Keun-Chang Kawk
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.627-629
    • /
    • 2023
  • 생체 신호를 분석하여 사용자의 건강과 정신 상태를 예측하고, 관련 질병에 관해 예방하는 연구가 늘어나고 있다. 생체 신호 중 심박은 사람의 육체, 정신적인 상태를 반영하는 대표적인 신호이지만 기존의 접촉 패드를 통한 ECG나 광학 센서를 통한 PPG로 심박을 예측할 때는 구속적인 환경이 필요하여 일상적인 상황 속에 적용하기 어려웠다. 이러한 단점을 해결하고자 본 논문은 UBFC-RPPG 데이터셋의 동영상 프레임을 RGB 채널마다 다른 가중치를 적용하는 전처리를 하여 학습 데이터의 크기를 줄이면서 정확도를 높이고, 3D-CNN을 활용한 딥러닝으로 순간적인 영상에서도 PPG 신호를 예측할 수 있도록 1초 전처리 영상을 학습한 후, 신호를 예측하는 것을 목표로 한다. 이렇게 비접촉식으로 취득된 신호는 더 다양한 환경에서의 감정분류, 우울증 진단, 질병 감지 등 다양한 분야에 활용될 수 있다.

Pre-processing algorithm by color correction based on features for multi-view video coding (특징점 기반 색상 보정을 이용한 다시점 비디오 부호화 전처리 기법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.472-474
    • /
    • 2011
  • 본 논문에서는 특징점 기반 색상보정을 이용한 다시점 비디오 부호화 전처리 방법을 제안 한다. 다시점 영상은 조명 및 카메라 간의 특성차이로 인해 인접 시점 간 색상차를 보인다. 이를 보정하기 위한 여러 가지 방법 중, 본 논문에서는 영상간의 대응되는 특징점들을 기반으로 상대적인 카메라의 특성을 모델링하고 이를 통해 색상을 보정하는 방법을 이용하였다. 대응되는 특징점을 추출하기 위해 Harris 코너 검출법을 사용하였고, 모델링 된 수식의 계수는 가우스-뉴튼 순환 기법으로 추정하였다. 참조 영상을 기준으로 보정해야할 타겟 영상의 색상값을 RGB 성분별로 보정했다. 테스트 영상을 가지고 실험한 결과 제안한 전처리 방법으로 보정을 하였을 경우, 전처리 과정을 거치지 않았을 때보다 화질 및 압축효율이 향상됨을 알 수 있었다. 또한 누적 히스토그램 기반의 전처리 방식과 비교했을 때, PSNR은 성분별로 0.5 dB ~ 0.8dB 정도 올랐고 Bit rate는 14% 정도 절감되는 효과를 확인 하였다.

  • PDF

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.

Human Action Recognition Using Deep Data: A Fine-Grained Study

  • Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.97-108
    • /
    • 2022
  • The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.