Red giant branch shape and the luminosity of horizontal branch on the (V-I)-V CMD are used to derive the metallicity the globular cluster NGC 5053. The metallicities of NGC 5053 derived by SMR method ([Fe/H]=-2.62$\pm$0.07) and the relation between[Fe/H] and $(V-I)_{0.g}$ ([Fe/H]=-2.50) are in good agreement with previously determined values. This result confirms that the morphologies of RGB and HB on the (V-I)-V CMDs can be good indirect photometric metallicity indicators of galactic globular clusters.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.6
/
pp.561-566
/
2019
In the Internet space, integrity and security must be maintained for secure and confidential communication, which ensures reliability between sender and receiver. Cryptography is an important factor in maintaining robustness against external attacks. For this purpose, encryption and steganography methods are used. Steganography is a method of hiding confidential information without making statistically significant changes to digital media. I propose a method of transforming the Hangul-Jamo consisting of choseong, jungseong and jongseong, and inserting them into RGB pixel values of the cover image. In order to improve security, a new blending method was used to hide the altered information in the lowest region. In this case, a mixture of LSB and LDR techniques was applied. PSNR was calculated for image quality. The PSNR of the proposed method is 43.225dB, which satisfies the lowest level.
Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.34
no.4
/
pp.431-441
/
2016
Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.
Kim, Dongseok;Song, Jisu;Jeong, Eunji;Hwang, Hyunjung;Park, Jaesung
Journal of The Korean Society of Agricultural Engineers
/
v.66
no.4
/
pp.27-39
/
2024
Soil texture is determined by the proportions of sand, silt, and clay within the soil, which influence characteristics such as porosity, water retention capacity, electrical conductivity (EC), and pH. Traditional classification of soil texture requires significant sample preparation including oven drying to remove organic matter and moisture, a process that is both time-consuming and costly. This study aims to explore an alternative method by developing an AI model capable of predicting soil texture from images of pre-sorted soil samples using computer vision and deep learning technologies. Soil samples collected from agricultural fields were pre-processed using sieve analysis and the images of each sample were acquired in a controlled studio environment using a smartphone camera. Color distribution ratios based on RGB values of the images were analyzed using the OpenCV library in Python. A convolutional neural network (CNN) model, built on PyTorch, was enhanced using Digital Image Processing (DIP) techniques and then trained across nine distinct conditions to evaluate its robustness and accuracy. The model has achieved an accuracy of over 80% in classifying the images of pre-sorted soil samples, as validated by the components of the confusion matrix and measurements of the F1 score, demonstrating its potential to replace traditional experimental methods for soil texture classification. By utilizing an easily accessible tool, significant time and cost savings can be expected compared to traditional methods.
Compared to the bar code which is being widely used for commercial products management, color code is advantageous in both the outlook and the number of combinations. And the color code has application areas complement to the RFID's. However, due to the severe distortion of the color component values, which is easily over $50{\%}$ of the scale, color codes have difficulty in finding applications in the industry. To improve the accuracy of recognition of color codes, it'd better to statistically process an entire color region and then determine its color than to process some samples selected from the region. For this purpose, we suggest a technique to detect edges between color regions in this paper, which is indispensable for an accurate segmentation of color regions. We first transformed RGB color image to HSI and YIQ color models, and then extracted I- and Y-components from them, respectively. Then we performed Canny edge detection on each component image. Each edge image usually had some edges missing. However, since the resulting edge images were complementary, we could obtain an optimal edge image by combining them.
Proceedings of the Korea Contents Association Conference
/
2004.11a
/
pp.321-326
/
2004
Many researchers have been studied texturing the 3D face model with front and side pictures of ordinary person. It is very important to exactly detect the psition of eyes, nose, mouth of a human from the side pictures. Previous results first found the position of eye, nose, or mouth and then extract the other face components using their positional correlation. The detection results greatly depend on the correct extraction of the neck from the images. Therefore, we present a new algorithm that remove the neck completely and thus improve the detection rates of face components. To do this, we will use the RGB values and its differences.
Recently, various types of image contents are being produced, and interest in copyright protection technology is increasing. In this paper, we propose an image encryption technology for color images. This technique divides the image into RGB color components and then performs quad-tree decomposition based on the edge of image. After the quad-tree partitioning, encryption is performed on the selected blocks. Encryption is performed on color components to measure encryption efficiency, and encryption efficiency is measured even after reconstitution into a color image. The encryption efficiency uses a visual measurement method and an objective image quality evaluation method. The PSNR values were measured as 7~10 dB for color difference components and 16~19 dB for color images. The proposed image encryption technology will be used to protect copyright of various digital image contents in the future.
A software to visualize and analyse 3-D seismic data is developed using OpenGL, one of the most popular 3-D graphic library, under the PC and Windows platform. The software can visualize the data as volume and slices, whose color distribution is specified by a special dialog box that can pick a color in RGB or HSV format. The dialog box can also designate opacity values so that several 3-D objects can be displayed superimposed each other. Horizon picking is implemented very easily with this software thanks to the guided picking method. The picked points from a horizon will compose a set of points, mesh, and a surface, which can be viewed and analysed in three dimensions.
In this paper, we present an upsampling technique for depth map image using color and depth weights. First, we construct a high-resolution image using the bilinear interpolation technique. Next, we detect a common edge region using RGB color space, HSV color space, and depth image. If an interpolated pixel belongs to the common edge region, we calculate weighting values of color and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.1
/
pp.191-196
/
2021
In this paper, we implemented an image sensor module possible of detecting color temperature in an indoor environment. The color temperature information in the video information acquired by the image sensor was matched with a color difference illuminometer to produce an LUT. An algorithm was developed so that color temperature information according to the received RGB values can be automatically calculated. As a result of measuring the color temperature with an image sensor indoors, an accurate result of less than 5.91% was obtained compared to the reference value. It was confirmed that the uniformity of 23.5% or more was excellent compared to the color temperature measurement result using a color sensor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.