• Title/Summary/Keyword: RGB color image

Search Result 483, Processing Time 0.025 seconds

Underwater image quality enhancement through Rayleigh-stretching and averaging image planes

  • Ghani, Ahmad Shahrizan Abdul;Isa, Nor Ashidi Mat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.840-866
    • /
    • 2014
  • Visibility in underwater images is usually poor because of the attenuation of light in the water that causes low contrast and color variation. In this paper, a new approach for underwater image quality improvement is presented. The proposed method aims to improve underwater image contrast, increase image details, and reduce noise by applying a new method of using contrast stretching to produce two different images with different contrasts. The proposed method integrates the modification of the image histogram in two main color models, RGB and HSV. The histograms of the color channel in the RGB color model are modified and remapped to follow the Rayleigh distribution within certain ranges. The image is then converted to the HSV color model, and the S and V components are modified within a certain limit. Qualitative and quantitative analyses indicate that the proposed method outperforms other state-of-the-art methods in terms of contrast, details, and noise reduction. The image color also shows much improvement.

Contents-based Image Retrieval Using Color & Edge Information (칼라와 에지 정보를 이용한 내용기반 영상 검색)

  • Park, Dong-Won;An, Syungog;Ma, Ming;Singh, Kulwinder
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • In this paper we present a novel approach for image retrieval using color and edge information. We take into account the HSI(Hue, Saturation and Intensity) color space instead of RGB space, which emphasizes more on visual perception. In our system colors in an image are clustered into a small number of representative colors. The color feature descriptor consists of the representative colors and their percentages in the image. An improved cumulative color histogram distance measure is defined for this descriptor. And also, we have developed an efficient edge detection technique as an optional feature to our retrieval system in order to surmount the weakness of color feature. During the query processing, both the features (color, edge information) could be integrated for image retrieval as well as a standalone entity, by specifying it in a certain proportion. The content-based retrieval system is tested to be effective in terms of retrieval and scalability through experimental results and precision-recall analysis.

  • PDF

Detecting Boundaries between Different Color Regions in Color Codes

  • Kwon B. H.;Yoo H. J.;Kim T. W.
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.846-849
    • /
    • 2004
  • Compared to the bar code which is being widely used for commercial products management, color code is advantageous in both the outlook and the number of combinations. And the color code has application areas complement to the RFID's. However, due to the severe distortion of the color component values, which is easily over $50{\%}$ of the scale, color codes have difficulty in finding applications in the industry. To improve the accuracy of recognition of color codes, it'd better to statistically process an entire color region and then determine its color than to process some samples selected from the region. For this purpose, we suggest a technique to detect edges between color regions in this paper, which is indispensable for an accurate segmentation of color regions. We first transformed RGB color image to HSI and YIQ color models, and then extracted I- and Y-components from them, respectively. Then we performed Canny edge detection on each component image. Each edge image usually had some edges missing. However, since the resulting edge images were complementary, we could obtain an optimal edge image by combining them.

  • PDF

A Basic Study on the Pitch-based Sound into Color Image Conversion (피치 기반 사운드-컬러이미지 변환에 관한 기초연구)

  • Kang, Kun-Woo;Kim, Sung-Ill
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.231-238
    • /
    • 2012
  • This study aims for building an application system of converting sound into color image based on synesthetic perception. As the major features of input sound, both scale and octave elements extracted from F0(fundamental frequency) were converted into both hue and intensity elements of HSI color model, respectively. In this paper, we used the fixed saturation value as 0.5. On the basis of color model conversion theory, the HSI color model was then converted into the RGB model, so that a color image of the BMP format was finally created. In experiments, the basic system was implemented on both software and hardware(TMS320C6713 DSP) platforms based on the proposed sound-color image conversion method. The results revealed that diverse color images with different hues and intensities were created depending on scales and octaves extracted from the F0 of input sound signals. The outputs on the hardware platform were also identical to those on the software platform.

  • PDF

Segmentation of Immunohistochemical Breast Carcinoma Images Using ML Classification (ML분류를 사용한 유방암 항체 조직 영상분할)

  • 최흥국
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.108-115
    • /
    • 2001
  • In this paper we are attempted to quantitative classification of the three object color regions on a RGB image using of an improved ML(Maximum Likelihood) classification method. A RGB color image consists of three bands i.e., red, green and blue. Therefore it has a 3 dimensional structure in view of the spectral and spatial elements. The 3D structural yokels were projected in RGB cube wherefrom the ML method applied. Between the conventionally and easily usable Box classification and the statistical ML classification based on Bayesian decision theory, we compared and reviewed. Using the ML method we obtained a good segmentation result to classify positive cell nucleus, negative cell Nucleus and background un a immuno-histological breast carcinoma image. Hopefully it is available to diagnosis and prognosis for cancer patients.

  • PDF

A Color-Based Medicine Bottle Classification Method Robust to Illumination Variations (조명 변화에 강인한 컬러정보 기반의 약병 분류 기법)

  • Kim, Tae-Hun;Kim, Gi-Seung;Song, Young-Chul;Ryu, Gang-Soo;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • In this paper, we propose the classification method of medicine bottle images using the features with color and size information. It is difficult to classify with size feature only, because there are many similar sizes of bottles. Therefore, we suggest a classification method based on color information, which robust to illumination variations. First, we extract MBR(Minimum Boundary Rectangle) of medicine bottle area using Binary Threshold of Red, Green, and Blue in image and classify images with size. Then, hue information and RGB color average rate are used to classify image, which features are robust to lighting variations. Finally, using SURF(Speed Up Robust Features) algorithm, corresponding image can be found from candidates with previous extracted features. The proposed method makes to reduce execution time and minimize the error rate and is confirmed to be reliable and efficient from experiment.

Smoke Detection Based on RGB-Depth Camera in Interior (RGB-Depth 카메라 기반의 실내 연기검출)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • In this paper, an algorithm using RGB-depth camera is proposed to detect smoke in interrior. RGB-depth camera, the Kinect provides RGB color image and depth information. The Kinect sensor consists of an infra-red laser emitter, infra-red camera and an RGB camera. A specific pattern of speckles radiated from the laser source is projected onto the scene. This pattern is captured by the infra-red camera and is analyzed to get depth information. The distance of each speckle of the specific pattern is measured and the depth of object is estimated. As the depth of object is highly changed, the depth of object plain can not be determined by the Kinect. The depth of smoke can not be determined too because the density of smoke is changed with constant frequency and intensity of infra-red image is varied between each pixels. In this paper, a smoke detection algorithm using characteristics of the Kinect is proposed. The region that the depth information is not determined sets the candidate region of smoke. If the intensity of the candidate region of color image is larger than a threshold, the region is confirmed as smoke region. As results of simulations, it is shown that the proposed method is effective to detect smoke in interior.

Color Correction Method of Non-standard Display Using Standard Color Space (표준 색공간을 이용한 비표준 디스플레이의 색 보정 방법)

  • Kim, Eun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2151-2157
    • /
    • 2015
  • A standard default color space, sRGB, provides compatibility for the transmission of color within the Internet color operating systems and device drivers. However, a display monitor we use generally have non-standard primaries and gamma characteristic different from those specified by sRGB. In this paper, correction methods of chromatic error for a non-standard display monitor are proposed. Experimental results show that the proposed method using the correction matrix reduced chromatic errors at in compared with the non-corrected image's on a non-standard display.

Spectral Reflectance Estimation of RGB Color Signal (RGB 색신호의 분광반사율 추정)

  • Beak, Jin-Wook;Choi, Hwan-Eon;Ahn, Suk-Chul
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Recently as color image processing to be become independent have been desired at the light source in an image processing and it have been enlarged. An image processing of the light source which is become independent means an image processing which uses a spectral reflectance information. We improved it in the spectral reflectance estimation method which uses existing 3-band image in this research that the improvement of an identity color population generation method which uses the hue angle and the processing speed improvement and introduces a labelling method. The precision of a spectral reflectance estimation appeared to the ${\Delta}E^*_{ab}$ of an average 2.7 comparing with the measurement price. The practical use possibility came to be fast and appeared a processing speed compared with existing method.

  • PDF

A Study on Color Management of Input and Output Device in Electronic Publishing (II) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (II))

  • Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2007
  • The input and output device requires precise color representation and CMS (Color Management System) because of the increasing number of ways to apply the digital image into electronic publishing. However, there are slight differences in the device dependent color signal among the input and output devices. Also, because of the non-linear conversion of the input signal value to the output signal value, there are color differences between the original copy and the output copy. It seems necessary for device-dependent color information values to change into device-independent color information values. When creating an original copy through electronic publishing, there should be color management with the input and output devices. From the devices' three phases of calibration, characterization and color conversion, the device-dependent color should undergo a color transformation into a device-independent color. In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After undergoing a color transformation in the input and output devices, the best results were created when the original target underwent a color transformation by the scanner and digital camera input device by the linear multiple regression, and the LCD output device underwent a color transformation by the GOG model.

  • PDF