• Title/Summary/Keyword: RGB color image

Search Result 487, Processing Time 0.024 seconds

A New Software for Quantitative Measurement of Strabismus based on Digital Image (디지털 영상 기반 정량적인 사시각 측정을 위한 새로운 소프트웨어)

  • Kim, Tae-Yun;Seo, Sang-Sin;Kim, Young-Jae;Yang, Hee-Kyung;Hwang, Jeong-Min;Kim, Kwang-Gi
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.595-605
    • /
    • 2012
  • Various methods for measuring strabismus have been developed and used in clinical diagnosis. However, most of them are based on the visual inspection by clinicians. For this reason, there is a high possibility of subjective evaluation in clinical decisions and they are only useful for cooperative patients. Therefore, the development of a more objective and reproducible method for measuring strabismus is needed. In this paper, we introduce a new software to complement the limitations of previous diagnostic methods. Firstly, we simply obtained facial images of patients and performed several preprocessing steps based on the spherical RGB color model with them. Then, the measurement of strabismus was performed automatically by using our 3D eye model and mathematical algorithm. To evaluate the validity of our software, we performed statistical correlation analysis of the results of the proposed method and the Krimsky test by two clinicians for ten patients. The coefficients of correlation for two clinicians were very high, 0.955 and 0.969, respectively. The coefficient of correlation between two clinicians also showed 0.968. We found a statistically significant correlation between two methods from our results. The newly developed software showed a possibility that it can be used as an alternative or effective assistant tool of previous diagnostic methods for strabismus.

Human Skeleton Keypoints based Fall Detection using GRU (PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지)

  • Kang, Yoon Kyu;Kang, Hee Yong;Weon, Dal Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • A recent study of people physically falling focused on analyzing the motions of the falls using a recurrent neural network (RNN) and a deep learning approach to get good results from detecting 2D human poses from a single color image. In this paper, we investigate a detection method for estimating the position of the head and shoulder keypoints and the acceleration of positional change using the skeletal keypoints information extracted using PoseNet from an image obtained with a low-cost 2D RGB camera, increasing the accuracy of judgments about the falls. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion-analysis method. A public data set was used to extract human skeletal features, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than a conventional, primitive skeletal data-use method.

Neuro-Net Based Automatic Sorting And Grading of A Mushroom (Lentinus Edodes L)

  • Hwang, H.;Lee, C.H.;Han, J.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1243-1253
    • /
    • 1993
  • Visual features of a mushroom(Lentinus Edodes L) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading looks simple, a decision making undereath the simple action comes form the results of the complex neural processing of the visual image. And processing details involved in the visual recognition of the human brain has not been fully investigated yet. Recently, however, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, a research of the neuro-net based human like information processing toward the agricultural product and processing are widely open and promising. In this pape , neuro-net based grading and sorting system was developed for a mushroom . A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features and their corresponding grades were used as input/output pairs for training the neural network and the trained results of the network were presented . The computer vision system used is composed of the IBM PC compatible 386DX, ITEX PFG frame grabber, B/W CCD camera , VGA color graphic monitor , and image output RGB monitor.

  • PDF

Comparison of Clinical Characteristics of Fluorescence in Quantitative Light-Induced Fluorescence Images according to the Maturation Level of Dental Plaque

  • Jung, Eun-Ha;Oh, Hye-Young
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • Background: Proper detection and management of dental plaque are essential for individual oral health. We aimed to evaluate the maturation level of dental plaque using a two-tone disclosing agent and to compare it with the fluorescence of dental plaque on the quantitative light-induced fluorescence (QLF) image to obtain primary data for the development of a new dental plaque scoring system. Methods: Twenty-eight subjects who consented to participate after understanding the purpose of the study were screened. The images of the anterior teeth were obtained using the QLF device. Subsequently, dental plaque was stained with a two-tone disclosing solution and a photograph was obtained with a digital single-lens reflex (DSLR) camera. The staining scores were assigned as follows: 0 for no staining, 1 for pink staining, and 2 for blue staining. The marked points on the DSLR images were selected for RGB color analysis. The relationship between dental plaque maturation and the red/green (R/G) ratio was evaluated using Spearman's rank correlation. Additionally, different red fluorescence values according to dental plaque accumulation were assessed using one-way analysis of variance followed by Scheffe's post-hoc test to identify statistically significant differences between the groups. Results: A comparison of the intensity of red fluorescence according to the maturation of the two-tone stained dental plaque confirmed that R/G ratio was higher in the QLF images with dental plaque maturation (p<0.001). Correlation analysis between the stained dental plaque and the red fluorescence intensity in the QLF image confirmed an excellent positive correlation (p<0.001). Conclusion: A new plaque scoring system can be developed based on the results of the present study. In addition, these study results may also help in dental plaque management in the clinical setting.

A Study to Improve the Accuracy of Segmentation and Classification of Mosaic Images over the Korean Peninsula (한반도 모자이크 영상의 분할 및 분류 정확도 향상을 위한 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1943-1949
    • /
    • 2021
  • In recent years, as the demand of high-resolution satellite images increases due to the miniaturization and constellation of satellites, various efforts to support users to utilize satellite images more conveniently are performed. Accordingly, the Korea Aerospace Research Institute produces and provides mosaic images on the Korean Peninsula every year to improve the convenience of users in the public sector and activate the use of satellite images. In order to increase the utilization of mosaic images on the Korean Peninsula, a study on satellite image segmentation and classification using mosaic images was attempted. However, since mosaic images provide only R, G, and B bands and processes such as image sharpening and color balancing are applied, there is a limitation that the spectral information of original images is distorted, so various indices were extracted and classified using R, G, and B bands to compensate for this. As a result of the study, the accuracy of image classification results using only mosaic images was about 72%, while the accuracy of image classification results using indices extracted from R, G, and B bands together was about 79%. Through this, it was confirmed that when performing image classification using mosaic images on the Korean Peninsula, the image classification results can be improved if the indices extracted from R, G, and B bands are used together. These research results are expected to be applied not only to mosaic images but also to images in which spectral information is limited or only R, G, and B bands are provided.

Perfusion MR Imaging of the Brain Tumor: Preliminary Report (뇌종야의 관류 자기공명영상: 예비보고)

  • 김홍대;장기현;성수옥;한문희;한만청
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.119-124
    • /
    • 1997
  • Purpose: To assess the utility of magnetic resonance(MR) cerebral blood volume (CBV) map in the evaluation of brain tumors. Materials and Methods: We performed perfusion MR imaing preoperatively in the consecutive IS patients with intracranial masses(3 meningiomas, 2 glioblastoma multiformes, 3 low grade gliomas, 1 lymphoma, 1 germinoma, 1 neurocytoma, 1 metastasis, 2 abscesses, 1 radionecrosis). The average age of the patients was 42 years (22yr -68yr), composed of 10 males and S females. All MR images were obtained at l.ST imager(Signa, CE Medical Systems, Milwaukee, Wisconsin). The regional CBV map was obtained on the theoretical basis of susceptibility difference induced by first pass circulation of contrast media. (contrast media: IScc of gadopentate dimeglumine, about 2ml/sec by hand, starting at 10 second after first baseline scan). For each patient, a total of 480 images (6 slices, 80 images/slice in 160 sec) were obtained by using gradient echo(CE) single shot echo-planar image(EPI) sequence (TR 2000ms, TE SOms, flip angle $90^{\circ}$, FOV $240{\times}240mm,{\;}matrix{\;}128{\times}128$, slice-thick/gap S/2.S). After data collection, the raw data were transferred to CE workstation and rCBV maps were generated from the numerical integration of ${\Delta}R2^{*} on a voxel by voxel basis, with home made software (${\Delta}R2^{*}=-ln (S/SO)/TE). For easy visual interpretation, relative RCB color coding with reference to the normal white matter was applied and color rCBV maps were obtained. The findings of perfusion MR image were retrospectively correlated with Cd-enhanced images with focus on the degree and extent of perfusion and contrast enhancement. Results: Two cases of glioblastoma multiforme with rim enhancement on Cd-enhanced Tl weighted image showed increased perfusion in the peripheral rim and decreased perfusion in the central necrosis portion. The low grade gliomas appeared as a low perfusion area with poorly defined margin. In 2 cases of brain abscess, the degree of perfusion was similar to that of the normal white matter in the peripheral enhancing rim and was low in the central portion. All meningiomas showed diffuse homogeneous increased perfusion of moderate or high degree. One each of lymphoma and germinoma showed homogenously decreased perfusion with well defined margin. The central neurocytoma showed multifocal increased perfusion areas of moderate or high degree. A few nodules of the multiple metastasis showed increased perfusion of moderate degree. One radionecrosis revealed multiple foci of increased perfusion within the area of decreased perfusion. Conclusion: The rCBV map appears to correlate well with the perfusion state of brain tumor, and may be helpful in discrimination between low grade and high grade gliomas. The further study is needed to clarify the role of perfusion MR image in the evaluation of brain tumor.

  • PDF

A Study on u-CCTV Fire Prevention System Development of System and Fire Judgement (u-CCTV 화재 감시 시스템 개발을 위한 시스템 및 화재 판별 기술 연구)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qigui;Park, So-A;Kim, Myung-Jin;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.463-466
    • /
    • 2010
  • In this paper, CCTV based fire surveillance system should aim to development. Advantages and Disadvantages analyzed of Existing sensor-based fire surveillance system and video-based fire surveillance system. To national support U-City, U-Home, U-Campus, etc, spread the ubiquitous environment appropriate to fire surveillance system model and a fire judgement technology. For this study, Microsoft LifeCam VX-1000 using through the capturing images and analyzed for apple and tomato, Finally we used H.264. The client uses the Linux OS with ARM9 S3C2440 board was manufactured, the client's role is passed to the server to processed capturing image. Client and the server is basically a 1:1 video communications. So to multiple receive to video multicast support will be a specification. Is fire surveillance system designed for multiple video communication. Video data from the RGB format to YUV format and transfer and fire detection for Y value. Y value is know movement data. The red color of the fire is determined to detect and calculate the value of Y at the fire continues to detect the movement of flame.

  • PDF

A Robust Hand Recognition Method to Variations in Lighting (조명 변화에 안정적인 손 형태 인지 기술)

  • Choi, Yoo-Joo;Lee, Je-Sung;You, Hyo-Sun;Lee, Jung-Won;Cho, We-Duke
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.25-36
    • /
    • 2008
  • In this paper, we present a robust hand recognition approach to sudden illumination changes. The proposed approach constructs a background model with respect to hue and hue gradient in HSI color space and extracts a foreground hand region from an input image using the background subtraction method. Eighteen features are defined for a hand pose and multi-class SVM(Support Vector Machine) approach is applied to learn and classify hand poses based on eighteen features. The proposed approach robustly extracts the contour of a hand with variations in illumination by applying the hue gradient into the background subtraction. A hand pose is defined by two Eigen values which are normalized by the size of OBB(Object-Oriented Bounding Box), and sixteen feature values which represent the number of hand contour points included in each subrange of OBB. We compared the RGB-based background subtraction, hue-based background subtraction and the proposed approach with sudden illumination changes and proved the robustness of the proposed approach. In the experiment, we built a hand pose training model from 2,700 sample hand images of six subjects which represent nine numerical numbers from one to nine. Our implementation result shows 92.6% of successful recognition rate for 1,620 hand images with various lighting condition using the training model.

A Design and Implementation of Fitness Application Based on Kinect Sensor

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • In this paper, we design and implement KITNESS, a windows application that feeds back the accuracy of fitness motions based on Kinect sensors. The feature of this application is to use Kinect's camera and joint recognition sensor to give feedback to the user to exercise in the correct fitness position. At this time, the distance between the user and the Kinect is measured using Kinect's IR Emitter and IR Depth Sensor, and the joint, which is the user's joint position, and the Skeleton data of each joint are measured. Using this data, a certain distance is calculated for each joint position and posture of the user, and the accuracy of the posture is determined. And it is implemented so that users can check their posture through Kinect's RGB camera. That is, if the user's posture is correct, the skeleton information is displayed as a green line, and if it is not correct, the inaccurate part is displayed as a red line to inform intuitively. Through this application, the user receives feedback on the accuracy of the exercise position, so he can exercise himself in the correct position. This application classifies the exercise area into three areas: neck, waist, and leg, and increases the recognition rate of Kinect by excluding positions that Kinect does not recognize due to overlapping joints in the position of each exercise area. And at the end of the application, the last exercise is shown as an image for 5 seconds to inspire a sense of accomplishment and to continuously exercise.

3D object generation based on the depth information of an active sensor (능동형 센서의 깊이 정보를 이용한 3D 객체 생성)

  • Kim, Sang-Jin;Yoo, Ji-Sang;Lee, Seung-Hyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.455-466
    • /
    • 2006
  • In this paper, 3D objects is created from the real scene that is used by an active sensor, which gets depth and RGB information. To get the depth information, this paper uses the $Zcam^{TM}$ camera which has built-in an active sensor module. <중략> Thirdly, calibrate the detailed parameters and create 3D mesh model from the depth information, then connect the neighborhood points for the perfect 3D mesh model. Finally, the value of color image data is applied to the mesh model, then carries out mapping processing to create 3D object. Experimentally, it has shown that creating 3D objects using the data from the camera with active sensors is possible. Also, this method is easier and more useful than the using 3D range scanner.

  • PDF