• Title/Summary/Keyword: RFLP.

Search Result 988, Processing Time 0.028 seconds

Development of an Economic-trait Genetic Marker by Applying Next-generation Sequencing Technologies in a Whole Genome (NGS 기법을 활용한 전장게놈에서의 경제형질 관련 유전자 마커 발굴)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1258-1267
    • /
    • 2014
  • Developing economic traits with a high growth rate, robustness, and disease resistance in livestock is an important challenge. RFLP and AFLP are the classical methods used to develop economic traits. Whole-genome-based economic traits have recently been detected with the advent of next-generation sequencing (NGS) technologies. However, NGS technologies are rather costly for use in studies, and RNA-seq, RAD-Seq, RRL, MSG, and GBS have been used to overcome the issue of high costs. In this study, recent NGS-based studies were reviewed, particularly those that focused on minimum costs and maximum effects. Then, we presented further prospects on how to apply for selection of high economic-trait livestock.

Genotype Analysis of apoVLDL-II Gene in Korean Chicken Breeds (한국 재래닭의 경제형질 개량을 위한 apoVLDL-II 유전자의 유전자형 분석)

  • Jung, K.C.;Lee, Y.J.;Bhuiyan, M.S.A.;Jang, B.K.;Choi, K.D.;Lee, J.H.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.4
    • /
    • pp.335-339
    • /
    • 2009
  • The very low density apolipoprotein-II (apoVLDL-II) gene is closely related with the constitution of the lipoprotein in various tissues. The apoVLDL-II gene have main functions for reducing fat elements from tissues and muscles. Previous results indicated that the polymorphisms in apoVLDL-II gene were positively related with growth and body composition traits in chicken. In this study, we analyzed previously identified apoVLDL-II gene polymorphisms using the PCR-RFLP method and investigated allele and genotype frequencies in three chicken breeds. Data indicated that Korean native chicken and Korean Oge chicken have similar B and F gene frequencies, indicating that this marker can be used for the improvement of growth and body composition traits in those breeds and can be used as marker assisted selection with further verifications.

Presence and Growth of Ammonia-oxidizing Bacteria in Anaerobic Ammonium Oxidation Enrichment (아나목스 농후배양에서 암모니아 산화균의 자생 특성)

  • Bae, Hyokwan;Paul, Tanusree;Jung, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.220-228
    • /
    • 2020
  • Anaerobic ammonium oxidation (AMX) is a cost-efficient biological nitrogen removal process. The coexistence of ammonia-oxidizing bacteria (AOB) in an AMX reactor is an interesting research topic as a nitrogen-related bacterial consortium. In this study, a sequencing batch reactor for AMX (AMX-SBR) was operated with a conventional activated sludge. The AOB in an AMX bioreactor were identified and quantified using terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR. A T-RFLP assay based on the ammonia monooxygenase subunit A (amoA) gene sequences showed the presence of Nitrosomonas europaea-like AOB in the AMX-SBR. A phylogenetic tree based on the sequenced amoA gene showed that AOB were affiliated with the Nitrosomonas europaea/mobilis cluster. Throughout the enrichment period, the AOB population was stable with predominant Nitrosomonas europaea-like AOB. Two OTUs of amoA_SBR_JJY_20 (FJ577843) and amoA_SBR_JJY_9 (FJ577849) are similar to the clones from AMX-related environments. Real-time qPCR was used to quantify AOB populations over time. Interestingly, the exponential growth of AOB populations was observed during the substrate inhibition of the AMX bacteria. The specific growth rate of AOB under anaerobic conditions was only 0.111 d-1. The growth property of Nitrosomonas europaea-like AOB may provide fundamental information about the metabolic relationship between the AMX bacteria and AOB.

Community characteristics of early biofilms formed on water distribution pipe materials (수도관 재질에 형성된 초기 생물막 형성 미생물의 군집 특성)

  • Kim, Yeong-Kwan;Park, Sung-Gu;Lee, Dong-Hun;Choi, Sung-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2012
  • Annular Biofilm Reactor (ABR) equipped with coupons of three different pipe materials (STS 304, PVC, PE) was used to generate drinking water biofilm samples. The level of assimilable organic carbon (AOC) during the sample generation period was $37.3{\mu}g/L$, and this level did not seem to be low enough to limit the formation of biofilm in this study. Terminal-restriction fragment length polymorphism (T-RFLP) analyses determined T-RF profile as early as 3 h of exposure on PVC coupons. Average surface roughness ($R_a$) measured by atomic force microscopic analyses was 125.7 nm for PVC, and this value was higher than for STS (71.6 nm) and PE (74.0 nm). However, biofilm formation was faster on STS (6 h) than on PE (12 h), which indicated that surface roughness might not be the only factor that controlled the initiation of biofilm development. Upon detection of the T-RF peaks, richness (S) and diversity indices such as Shannon (H) and Simpson (1/D) demonstrated a rather slow increase until 48 h followed by rapid increase regardless of the pipe materials. Differences of microbial community structures among the biofilm samples were determined based on the cluster analysis using Jaccard coefficients (Sj). Biofilm communities could be divided into two distinct groups according to the exposure time regardless of the pipe materials. First group contained a young (< 48 h) biofilm samples (10 out of 11) but second group contained a mature (${\geq}$ 48 h) samples (11 out of 14). Results suggested that, due to the complexity of biofilm, the targeting of the first group of cluster was crucial for optimizing the management of drinking water distribution systems and controlling microbial growth.

Identification of Medicinal Mushroom Species Based on Nuclear Large Subunit rDNA Sequences

  • Lee Ji Seon;Lim Mi Ok;Cho Kyoung Yeh;Cho Jung Hee;Chang Seung Yeup;Nam Doo Hyun
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • The purpose of this study was to develop molecular identification method for medical mushrooms and their preparations based on the nucleotide sequences of nuclear large subunit (LSD) rDNA. Four specimens were collected of each of the three representative medicinal mushrooms used in Korea: Ganoderma Incidum, Coriolus versicolor, and Fomes fomentarius. Fungal material used in these experiments included two different mycelial cultures and two different fruiting bodies from wild or cultivated mushrooms. The genomic DNA of mushrooms were extracted and 3 nuclear LSU rDNA fragments were amplified: set 1 for the 1.1-kb DNA fragment in the upstream region, set 2 for the 1.2-kb fragment in the middle, and set 3 for the 1.3-kb fragment downstream. The amplified gene products of nuclear large subunit rDNA from 3 different mushrooms were cloned into E. coli vector and subjected to nucleotide sequence determination. The sequence thus determined revealed that the gene sequences of the same medicinal mushroom species were more than $99.48\%$ homologous, and the consensus sequences of 3 different medicinal mushrooms were more than $97.80\%$ homologous. Restriction analysis revealed no useful restriction sites for 6-bp recognition enzymes for distinguishing the 3 sequences from one another, but some distinctive restriction patterns were recognized by the 4-bp recognition enzymes AccII and HhaI. This analysis was also confirmed by PCR-RFLP experiments on medicinal mushrooms.

Analysis of genetic relationships of Colletotrichum spp. isolated from sweet persimon with AFLP (AFLP를 이용한 단감나무 탄저병 병원균 Colletotrichum spp.의 유연관계 분석)

  • Kim, Hee-Jong;Jeong, Bong-Gu;Lee, Youn-Su
    • The Korean Journal of Mycology
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • Colletotrichum species are important fungal pathogens that cause great damages on various host plant species worldwide. In Korea, Colletotrichum species cause massive economic losses on apple, peach, grape, and especially, sweet persimon productions. In the past, identification of the pathogen and the studies on the genetic relationships among the pathogenic isolates were mainly based on morphology, cultural characteristics, and the difference in pathogenicity. However, in recent years, these traditional methods have been replaced with molecular methods including AFLP. AFLP method with the merits of both RAPD and RFLP has been widely used for the genetic relationship studies of various organisms. Therefore, in this study, AFLP method was employed for the studies of genetic relationships among the different isolates of Colletotrichum species collected from various parts of sothern Korea. As a result, two specific band pattern groups were observed among different isolates of Colletotrichum species.

  • PDF

Identification of Quantitative Trait Loci Associated with Seed Size and Weight in Soybean

  • Kim, Hong-Sik;Lee, Suk-Ha;Park, Keum-Yong;Lee, Yeong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.227-231
    • /
    • 2000
  • Small seed size is one of the major traits of soybean cultivars for sprouts with regard to high sprout yield. This study was conducted to identify quantitative trait loci (QTL) for seed size and weight in a set of F 6 seeds of 89 lines derived from a cross between 'Pureunkong', a soybean cultivar developed for sprouts and 'Jinpumkong 2', a soybean cultivar with no beany taste in seed due to the lack of lipoxygenases. The genetic map of 25 linkage groups with a total of 98 markers including RFLP, RAPD, SSR and classical markers was constructed from this F/sbu 5/-derived population and was used for QTL analysis. 'Pureunkong' was significantly smaller (P<0.01) than 'Jinpumkong 2' in seed size and seed weight. Genetic variation was detected and transgressive segregation was common in the population for these traits. Seven DNA markers including opT14-1600 in LG A2, opF02-400 in LG B2, Satt100, opC09-700, opG04-730 and opQll-650 in LG C2, and opY07-1100 & 1000 in LG(unknown) were significantly associated and accounted for 4.7 to 10.9% and 5.1 to 10.1 % of the phenotypic variation in seed size and seed weight, respectively. 'Pureunkong' alleles increased seed size and seed weight at the all four significant marker loci on the LG C2. These marker loci in LG C2 were closely linked and were presumed to be a single QTL. Overall, at least three independent QTLs from 3 linkage groups (A2, B2, and C2) were putatively involved in the control of seed size and seed weight.

  • PDF

Molecular Discrimination of Cervidae Antlers and Rangifer Antlers

  • Kim, Eun-Jin;Jung, Young-Ja;Kang, Shin-Jung;Chang, Seung-Yup;Huh, Keun;Nam, Doo-Hyun
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.114-117
    • /
    • 2001
  • Cervi Parvum Cornu is widely used as a hemopoietic, tonifying, growth-promoting, cardiotonic, and immuno-modulating agent in Korea. In order to develop the quality control method of Cervi Parvum Cornu by the identification of the biological source or origin, the molecular approach was applied using PCR (polymerase chain reaction) and PCR-RFLF (PCR-restriction fragment length polymorphism) analysis. In the PCR analysis of the mitochondrial 12S rRNA gene and cytochrome b gene regions, no distinctive DNA bands from Cervidae (deer) antlers and Rangifer (reindeer) antlers were observed. However, when the amplified products in the mitochondrial cytochrome b gene region were subjected to restriction digestion with TaqI, Cervidae antlers showed an undigested state of 380 by band, differently from two bands of 230 by and 1S0 by from Rangifer antlers. Based on this finding, the base sequences of amplified PCR products in the range of mitochondria) cytochrome b gene from Cervidae antlers and Rangifer antlers were determined and subjected to restriction analysis by various endonucleases. The results showed that antlers from Rangifer species could be simply discriminated with other antlers from 8 Cervidae species (Chinese deer, Russian deer, Hong Kong deer, New Zealand deer, Kazakhstan deer, elk, red deer and Sika deer) by PCR-RFLP analysis using AtuI, HaeIII, HpaII or Sau3AI(MboI) as well as TaqI in the range of the mitochondrial cytochrome b gene.

  • PDF

Effects of elevated CO2 on organic matter decomposition capacities and community structure of sulfate-reducing bacteria in salt marsh sediment

  • Jung, Soo-Hyun;Lee, Seung-Hoon;Park, Seok-Soon;Kang, Ho-Jeong
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.261-270
    • /
    • 2010
  • Increasing atmospheric $CO_2$ affects the soil carbon cycle by influencing microbial activity and the carbon pool. In this study, the effects of elevated $CO_2$ on extracellular enzyme activities (EEA; ${\beta}$-glucosidase, N-acetylglucosaminidase, aminopeptidase) in salt marsh sediment vegetated with Suaeda japonica were assessed under ambient atmospheric $CO_2$ concentration (380 ppm) or elevated $CO_2$ concentration (760 ppm) conditions. Additionally, the community structure of sulfate-reducing bacteria (SRB) was analyzed via terminal restriction fragments length polymorphism (T-RFLP). Sediment with S. japonica samples were collected from the Hwangsando intertidal flat in May 2005, and placed in small pots (diameter 6 cm, height 10 cm). The pots were incubated for 60 days in a growth chamber under two different $CO_2$ concentration conditions. Sediment samples for all measurements were subdivided into two parts: surface (0-2 cm) and rhizome (4-6 cm) soils. No significant differences were detected in EEA with different $CO_2$ treatments in the surface and rhizome soils. However, the ratio of ${\beta}$-glucosidase activity to N-acetylglucosaminidase activity in rhizome soil was significantly lower (P < 0.01) at 760 ppm $CO_2$ than at 380 ppm $CO_2$, thereby suggesting that the contribution of fungi to the decomposition of soil organic matter might in some cases prove larger than that of bacteria. Community structures of SRB were separated according to different $CO_2$ treatments, suggesting that elevated $CO_2$ may affect the carbon and sulfur cycle in salt marshes.

Genome Mapping Technology And Its Application In Plant Breeding (작물 육종에서 분자유전자 지도의 이용)

  • 은무영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.07a
    • /
    • pp.57-86
    • /
    • 1995
  • Molecular mapping of plant genomes has progressed rapidly since Bostein et al.(1980) introduced the idea of constructing linkage maps of human genome based on restriction fragment length polymorphism (RFLP) markers. In recent years, the development of protein and DNA markers has stimulated interest for the new approaches to plant improvement. While classical maps based on morphological mutant markers have provided important insights into the plant genetics and cytology, the molecular maps based on molecular markers have a number of inherent advatages over classical genetic maps for the applications in genetic studies and/or breeding schemes. Isozymes and DNA markers are numerous, discrete, non-deleterious, codominant, and almost entirely free of environmental and epistatic interactions. For these reasons, they are widely used in constructing detailed linkage maps in a number of plant species. Plant breeders improve crops by selecting plants with desirable phenotypes. However a plant's phenotyes is often under genetic control, positioning at different "quantitative trait loci" (QTLs) together with environmental effects. Molecular maps provide a possible way to determine the effect of the individual gene that combines to produce a quantitative trait because the segregation of a large number of markers can be followed in a single genetic cross. Using market-assisted selection, plants that contain several favorable genes for the trait and do not contain unfavourable segments can be obtained during early breeding processes. Providing molecular maps are available, valuable data relevant to the taxonomic relationships and chromosome evolution can be accumulated by comparative mapping and also the structural relationships between linkage map and physical map can be identified by cDNA sequencing. After constructing high density maps, it will be possible to clone genes, whose products are unknown, such as semidwarf and disease resistance genes. However, much attention has to be paid to level-up the basic knowledge of genetics, physiology, biochemistry, plant pathology, entomology, microbiology, and so on. It must also be kept in mind that scientists in various fields will have to make another take off by intensive cooperation together for early integration and utilization of these newly emerging high-techs in practical breeding. breeding.

  • PDF