• Title/Summary/Keyword: RFLP.

Search Result 988, Processing Time 0.03 seconds

Detection and Identification of Mycobacterium Tuberculosis in Patients with Tuberculous Cervical Lymphadenitis by PCR-RFLP (경부 결핵성 임파선염 환자에서 PCR-RELP를 이용한 결핵균의 검출 및 확인)

  • Lee Sang-Sook;Cho Young-Rok;Chun Ji-Min;Choi Yong-Seok;Sohn Eun-Ju;Park Nam-Cho;Park June-Sik
    • Korean Journal of Head & Neck Oncology
    • /
    • v.12 no.2
    • /
    • pp.169-176
    • /
    • 1996
  • Tuberculous cervical lymphadenitis is still an important cause of neck mass in Korea. Tuberculosis is an important differential diagnosis in patients of cervical lymphadenopathy. Rapid and sensitive test for the diagnosis of tuberculosis is essential for the approapiate treatment. Up to now, conventional diagnostic methods for M. tuberculosis were acid-fast bacilli(AFB) stain and culture of M. tuberculosis. The direct microscopic examination of AFB by Ziehl-Neelsen stain is rapid, but often negative. The culture for M. tuberculosis is time-consuming, taking 4 to 8 weeks. Recently various methods to detect Mycobacterial DNA, including PCR and restriction fragment length polymorphism(RFLP) analysis have been reported. Here we represent a simple method for the confirmation of M. tuberculosis and exclusion of the other Mycobacterial species by RFLP analysis and silver staining of polyacrylamide gel electrophoresis after nested PCR for a repetitive DNA sequence(IS986) specific for M. tuberculosis from fresh or paraffin-embedded biopsy specimens. This result leads us to conclude that this method is simple, rapid and possibly applicable to confirm M. tuberculosis and rule out the other Mycobacteria species from the clinical specimens in the clinical laboratories.

  • PDF

Restriction endonuclease analysis of mitochondrial DNA of Acanthamoebn sp. YM-4 (Korean isolate) (Acanrhamoeba sp. YM-4의 미토콘드리아 DNA의 RFLP분석)

  • Sin, Ho-Jun;Im, Gyeong-Il;Jeon, Gwang-U
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.2
    • /
    • pp.119-126
    • /
    • 1997
  • Acanthnmoebn sp. YM-4 is simitar to A. culbertsoni based upon morphological characteristics of trophozoites and cysts. However, based on other characteristics, pathogenicity to mice, in uitro cytotoxicity and isoenzyme patterns, Acanthomoebo sp. YM- 4 was quite different from A. culbertsoni. Restriction fragment length polymorphism (RFLP) analysis of mtDNA is useful in the classification of members belonging to the genus Acanthcmoebn. Therefore, in this study, RFLP analysis of Acnnthcmoeba mtDNAs was accomplished using five restriction enzymes: Hnelll, Hinull, Clcl, Pudl and ScE. Each restriction enzyme produced approximately 3-15 fragments (range: from 0:6 kip to 34.4 kbp) . The mtDNA genome size, calculated by the summation of restriction fragments, averaged 46.4 kbp in Acnnthamoeba sp. YM-4,48.3 kbp in A. culbertsoni and 48.8 kbp in A. polyphaic, respectively. Digested mtDNA fragments of Accnthcmoeba sp. YM-4 contained nine and seven same size fragments, respectively, from a total of 67 and 69 fragments observed in A. culbertsoni and A. polyphcgn. An estimate of the genetic divergence was 10.1% between Acanthamoebc sp. YM-4 and A. culbertsoni, and 9.9% between Acanthamoebn sp. YM-4 and A. polyphcga.

  • PDF

Genetic Characterization of Potato Blackleg Strains from Jeju Island (제주지역에서 분리한 감자 줄기검은병균의 유전적 특성)

  • Seo Sang-Tae;Lee Seungdon;Lee Jung-Sup;Han Kyoung-Suk;Jang Han-Ik;Lim Chun-Keun
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.140-145
    • /
    • 2005
  • A collection of 12 Erwinia carotovora strains from blackleg diseased potato in Jeju island was characterized genetic diversity by 5. cayotovora subsp. atposeptica (Eca)-specific PCR, PCR-RFLP of the two genes (16S rRNA and pel) and repetitive sequence PCR (ERIC-PCR). The results were compared with those of the other E. carotovora representative strains. None of the blackleg strains produced PCR amplicons with Eca-specific primers in contrast to the single 690 bp amplicon obtained with Eca strains. In addition, on the basis of pel gene RFLP with Sau3AI, the blackleg strains belonged to the pattern 2 whereas Eca strains belonged to the other one (pattern 3). By analysis of 16S rDNA RELP generated with HinfI, the most strains including the E. carotovera subsp. carotovora (Ecc) representative strains used in this study belonged to the pattern 1 whereas the blackleg strains belonged to the pattern 2 except for one strain. Moreover, ERIC-PCR analysis showed that the blackleg strains were closely related to each other and had an unique DNA band. Based on these molecular approaches, we have confirmed that the blackleg disease of potato is caused by a different E. carotovora from Eca and Ecc in Jeju island.

Bacterial Community Structure and Diversity Using 16S rDNA Analysis in the Intertidal Sediment of Ganghwa Island (16S rDNA 분석을 이용한 강화도 장화리 갯벌 퇴적물 내 미생물 군집구조 및 다양성)

  • Cho Hye Youn;Lee Jung-Hyun;Hyun Jung-Ho
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.189-198
    • /
    • 2004
  • T-RFLP analysis and clone sequencing analysis based on bacterial 16S rDNA were conducted to assess bacterial community structure and diversity in two layers (0-1cm, 6-7cm depth) of the sediment from Janghwari intertidal flat in Ganghwa Island. The results of T-RFLP (terminal-restriction fragment length polymorphism) analysis using restriction enzyme HhaI showed that the T-RFs of various size ($60{\pm}2$) bp-($667{\pm}2$) bp) appeared evenly at the surface sediments but two T-RFs with 60(${\pm}2$)bp and 93 (${\pm}2$)bp predominated at 6-7cm depth. Analysis of partial sequences for 172 clones revealed that 98% of the clones were not matched with the sequences of cultured bacteria strains in the GenBank (${\geq}similarity$ 98%), and approximately 86% of them were classified as different phylotypes. Most clones belonged to $\alpha$-, $\gamma$-, and $\delta$-Proteobacteria, Acidobacteria/Holophaga and green nonsulfur bacteria group. Proteobacteria group occupied the highest proportion in both layers (69% at 0-1cm depth and 46% at 6-7cm depth). $\gamma$-Proteobacteria and $\delta$-Proteobacteria that are associated with oxidation and reduction of sulfur compounds were appeared to be dominant, and comprised 21.5% and 15.7% of total clones, respectively. Overall results indicated that extremely diverse bacterial groups were inhabiting in the sediment of Ganghwa intertidal flat, and bacterial communities associated with the behaviour of sulfur seemed to playa significant role in the biogeochemical environment in this anoxic sediment.

Differentiation of Korean isolates of Entamoeba histolytica from Entamoeba dispar (우리 나라에서 분리한 이질아메바(Entamoeba histoItica)와 동형아메바(Entamoebn dispar)의 감별)

  • 최성준;이미정
    • Parasites, Hosts and Diseases
    • /
    • v.34 no.1
    • /
    • pp.15-20
    • /
    • 1996
  • Cysts of Entamoebn histoIMtica are still found from humans in Korea, but notall of the cysts are known as pathogenic. The non-pathogenic strain is regarded as a differenL species, E. nispnr. In this study, Korean isolates of conventional E. histolvticn were subjected for the differentiation by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. Human stools were screened by routine microscopic examination, and cyst or trophozoite positive stools were inoculated into Robinson media. The cultivated trophozoites were prepared for DNA extraction, and the DNAs were used for PCR with common primers of Pl gene. The PCR products were divested with 3 restriction enzymes and RFLP was observed. Also anti-sense primers containing the cleavage site of each restriction eWe were designed for differentiation only by PCR. The PCR products of Korean isolates 59,512, YS-6, and YS-27 were spliced by Taq I and Xmnl but not byAccl, and the isolates S1, S3, S11, S15, S16, S17, S20, YS- l7, and YS-44 were spliced by Acc I but not by Taq I and Xmn I. These RFLP pattern correlated well with PCR products by the species specific primers. The findings confirm that the Korean isolates 59,512, YS-6, and YS-27 are E. histolwtico and others are E. dispar. In Korea, most of the asymptomatic cyst carriers are infected by E. dispar, not by E. histolytica. Key words: Entcmoebc histolytica, Entcmoebn dispar Korean isolates, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)

  • PDF

A comparison of community structure and denitrifying ratio for denitrifying bacteria dependent on agricultural methods and seasons (농법과 계절에 따른 탈질세균의 군집 구조와 탈질율 비교)

  • Yoon, Jun-Beom;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • We studied soil composition, $N_2O$ production, a number of denitrifying bacteria, community structure and T-RFLP patterns of denitrifying bacteria dependent on agricultural methods with the change of seasons. Analyses of the soil chemical composition revealed that total carbon and total organic carbon contents were 1.57% and 1.28% in the organic farming soil, 1.52% and 1.24% in the emptiness farming soil, and 1.40% and 0.95% in traditional farming soil, respectively. So, the amount of organic carbon was relatively high in the environment friendly farming soils than traditional farming soils. In case of $N_2O$ production, the amount of $N_2O$ production was high in May and November soils, but the rate of $N_2O$ production was fast in August soil. The average number of denitrifying bacteria were $1.32{\times}10^4MPN{\cdot}g^{-1}$ in the organic farming soil, $1.17{\times}10^4MPN{\cdot}g^{-1}$ in the emptiness farming soil, and $6.29{\times}10^3MPN{\cdot}g^{-1}$ in the traditional farming soil. It was confirmed that the environment friendly farming soil have a larger number of denitrifying bacteria than the traditional farming soil. As a result of the phylogenetic analyses, it was confirmed that six clusters were included in organic farming soil among total 10 clusters. And the result of PCA profile distribution of T-RFLP pattern on agricultural methods, the range of distribution showed wide in the organic farming method, relatively narrow in the conventional farming method, and middle in the emptiness farming method. Therefore, we could concluded that the distribution and the community structure of denitrifying bacteria were changed according to the agricultural methods and seasons.

Some Properties of an Isolate of Peanut stunt virus Isolated from White Clover (Trifolium repens L.) (토끼풀에서 분리한 Peanut stunt virus의 성질)

  • Jung, Goo-Ho;Jeon, Yong-Woon;Choi, Jang-Kyung;Hong, Jin-Sung;Ryu, Ki-Hyun;Lee, Sang-Yong
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.71-75
    • /
    • 2008
  • An isolate of Peanut stunt virus (PSV), named as Tr-PSV, was isolated from white clover (Trifolium repens L) showing mosaic symptom. Tr-PSV systemically infected all plants tested in the Nicotiana spp. and induced local lesions on inoculated leaves of Chenopodium amaranticolor. However, Tr-PSV induced typical mosaic symptoms as ER-PSV on Vigna unguiculata 5 to 6 days after inoculation, while Fny-CMV used as a control virus of Cucumovirus produced local lesions on inoculated leaves. In dsRNA analysis, Tr-PSV consisted of four dsRNAs, but satellite RNA was not detected. The cDNA of coat protein gene of Tr-PSV was amplified by RT-PCR using a Cucumovirus-specific single pair primers that designed to amplify a DNA fragment of approximately 950 bp. By restriction mapping analysis using RFLP of the RT-PCR products and by serological properties of gel diffusion test, Tr-PSV belongs to a typical member of PSV subgroup I. This is the first report on the occurrence of PSV in white clover in Korea.

Comparison of PCR-RFLP and Real-Time PCR for Allelotyping of Single Nucleotide Polymorphisms of RRM1, a Lung Cancer Suppressor Gene (폐암 억제유전자 RRM1의 단일염기다형성 검사를 위한 PCR-RFLP법과 Real-Time PCR법의 유용성 비교)

  • Jeong, Ju-Yeon;Kim, Mi-Ran;Son, Jun-Gwang;Jung, Jong-Pil;Oh, In-Jae;Kim, Kyu-Sik;Kim, Young-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.5
    • /
    • pp.406-416
    • /
    • 2007
  • Background: Single nucleotide polymorphisms (SNPs), which consist of a substitution of a single nucleotide pair, are the most abundant form of genetic variations occurring with a frequency of approximately 1 per 1000 base pairs. SNPs by themselves do not cause disease but can predispose humans to disease, modify the extent or severity of the disease or influence the drug response and treatment efficacy. Single nucleotide polymorphisms (SNPs), particularly those within the regulatory regions of the genes often influence the expression levels and can modify the disease. Studies examining the associations between SNP and the disease outcome have provided valuable insight into the disease etiology and potential therapeutic intervention. Traditionally, the genotyping of SNPs has been carried out using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP), which is a low throughput technique not amenable for use in large-scale SNP studies. Recently, TaqMan real-time PCR chemistry was adapted for use in allelic discrimination assays. This study validated the accuracy and utility of real-time PCR technology for SNPs genotyping Methods: The SNPs in promoter sequence (-37 and -524) of lung cancer suppressor gene, RRM1 (ribonucleotide reductase M1 subunit) with the genomic DNA samples of 89 subjects were genotyped using both real-time PCR and PCR-RFLP. Results: The discordance rates were 2.2% (2 mismatches) in -37 and 16.3% (15 mismatches) in -524. Auto-direct sequencing of all the mismatched samples(17 cases) were in accord with the genotypes read by real-time PCR. In addition, 138 genomic DNAs were genotyped using real-time PCR in a duplicate manner (two separated assays). Ninety-eight percent of the samples showed concordance between the two assays. Conclusion: Real-time PCR allelic discrimination assays are amenable to high-throughput genotyping and overcome many of the problematic features associated with PCR-RFLP.

Application of the 18S Ribosomal DNA (rDNA) PCR-RFLP Technique for the Differential Diagnosis of Anisakidosis (고래회충유충증 감별 진단을 위한 18S ribosomal DNA (rDNA) PCR-RFLP 법 적용)

  • Kim, Sun-Mee;Cho, Min-Kyung;Yu, Hak-Sun;Cha, Hee-Jae;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1328-1332
    • /
    • 2009
  • Anisakidosis is caused by anisakid nematodes (family Anisakidae) larvae which can cause not only direct tissue damage but also a severe allergic response related to excretory-secretion products. Lots of different species of anisakid larvae, including Anisakis simplex, Contracaecum, Goezia, Pseudoterranova, and Hysterothylacium, cause the anisakidosis. But it is difficult to diagnosis the species of larvae since the morphologies of larval anisakid nematodes are almost indistinguishable. In order to diagnosis the differential infections of larval anisakid nematodes, polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) of 18S rDNA - was conducted. Three major species of anisakid larvae including A. simplex, C.ontracaecum spp, and Goezia spp. were collected from mackerel (Scomber japonicus), mullet (Mugil cephalus), founder (Paralichthys olivaceus), eel (Astroconger myriaster) and red sea bream (Pagrus major). PCR amplified 18S rDNA from each species of anisakid larvae was digested with eight restriction enzymes including Taq I, Hinf I, Hha I, Alu I, Dde I, Hae III, Sau96 I, and Sau3A I. The original sizes of PCR amplified 18S rDNA were 2.0Kb in both anisakid larvaes and Goezia. Restrction enzymes including Hinf 1, Alu 1, Hha I, Dde 1 and Hae III cut differently and distinguished the A. simplex and Contracaecum type C'. However, Contracaecum type A showed two different restriction enzyme cutting patterns by Taq 1, Hinf I, Alu 1, and Dde 1. One of the patterns was the same as those of A. simplex, Contracaecum type C' and Goezia and the other was unique. These results suggest that PCR-RFLP pattern by Hinf 1, Alu 1, Hae I, Dde 1 and Hae III can be applied to differential diagnosis of human infection with A. simplex and Contracaecum type C'. Contracaecum type A needs further study of classification by morphological characteristics and genetic analysis.

Identification of Deer Antler Species Using Sequence Analysis and PCR-RFLP of Mitochondrial DNA (사슴 미토콘드리아 DNA의 염기서열 및 PCR-RFLP분석에 의한 녹용의 종 감별)

  • Shin, Ki-Hyun;Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.276-282
    • /
    • 2008
  • It is estimated that over 80% of deer antlers produced in the world are consumed in Korea. However, mislabeling or fraudulent replacement of costly antlers with cheaper ones is one of the most common problems in the domestic antler market. Therefore, there is a great need for the development of technology to identify species of antlers. This study was carried out to develop an accurate and reliable method for the identification and authentication of species or subspecies of antlers using DNA sequence analysis and comparison of mitochondrial cytochrome band D-loop region genes among antlers of five deer species, Cervus elaphus sibericus, Cervus elaphus canadensis, Cervus nippon, Cervus elaphus bactrianus and Rangifer tarandus. A variable region of cytochrome band D-loop genes was amplified using PCR with specifically designed primers and sequenced directly. The cytochrome band D-loop region genes showed different DNA sequences between the species of antlers and thus it is possible to differentiate between species on the basis of sequence variation. To distinguish between reindeer (Rangifer tarandus) antlers and other deer antlers, PCR amplicons of the cytochrome b gene were digested with the restriction enzymes NlaIV and TaqI, respectively, which generates a species-specific DNA profile of the reindeer. In addition, samples of 32 sliced antlers labeled Cervus elaphus sibericus from commercial markets were collected randomly and the mt DNA D-loop region of these antler samples was sequenced. Among the antler samples investigated, only 62.5% were from Cervus elaphus sibericus, and others were from Cervus elaphus bactrianus (25.0%), elk (Cervus elaphus canadensis) and reindeer (Rangifer tarandus). Our results suggest that DNA sequencing of mt DNA and PCR-RFLP methods using NlaIV and TaqI enzymes are useful for the identification and discrimination of deer antler species by routine analysis.