• Title/Summary/Keyword: RFID tag identification

Search Result 472, Processing Time 0.032 seconds

Efficient Tag Authentication Scheme using Tag ID Identification Bits in RFID Environment (RFID 환경에서 태그 ID의 식별 비트를 이용한 효율적인 태그 인증 기법)

  • Jang, Bong-Im;Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.195-202
    • /
    • 2011
  • RFID(Radio Frequency IDentification) is a system to identify objects and its usage is being extended to distribution, healthcare, and air&port etc. RFID is a contactless system environment, and reducing tag authentication time is important because multiple tags are identified at the same time. Studies about RFID system so far is, however, mostly to improve security vulnerability in the tag authentication process. Therefore, this paper suggests an efficient scheme to decrease the time of tag authentication which is also safe for the security of tag authentication process. The proposed scheme cuts down on the tag ID search time because it searches only the classified relevant ID in the database, which is one of many components of RFID system, by using identification bits for tag ID search. Consequently, the suggested scheme decreases process time for tag ID authentication by reducing the processing time and the load of the database. It also brings performance improvement of RFID system as it improves the energy applicability of passive tag.

OFSA: Optimum Frame-Slotted Aloha for RFID Tag Collision Arbitration

  • Lee, Dong-Hwan;Choi, Ji-Hoon;Lee, Won-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1929-1945
    • /
    • 2011
  • RFID technologies have attracted a lot of attention in recent years because of their cost/time-effectiveness in large-scale logistics, supply chain management (SCM) and other various potential applications. One of the most important issues of the RFID-based systems is how quickly tags can be identified. Tag collision arbitration plays a more critical role in determining the system performance especially for passive tag-based ones where tag collisions are dealt with rather than prevented. We present a novel tag collision arbitration protocol called Optimum Frame-Slotted Aloha (OFSA). The protocol has been designed to achieve time-optimal efficiency in tag identification through an analytic study of tag identification delay and tag number estimation. Results from our analysis and extensive simulations demonstrate that OFSA outperforms other collision arbitration protocols. Also, unlike most prior anti-collision protocols, it does not require any modification to the current standards and architectures facilitating the rollout of RFID systems.

Personal Identification Based on Radio Signal Strength for Ubiquitous Healthcare Systems

  • Lee, Jong-Shill;Park, Sang-Hae;Chee, Young-Joon;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.325-331
    • /
    • 2007
  • Personal identification is essential for the automatic measurement of biosignal information in home healthcare systems. Personal identification is usually achieved with passive radio frequency identification (RFID), which does little more than store a unique identification number. However, passive RFID is not ideal for automatic identification. We present a user identification system based on radio signal strength indication (RSSI) using ZigBee for active RFID tags. Personal identification is achieved by finding the largest RSSI value from aggregated beacon messages that are periodically transmitted by active RFID tags carried by users. Obtaining reliable person!'.! identification without restricting the orientation requires a certain distance between the closest active RFID tag from the ZED and the second closest tag. The results show that the closest active RFID tag from the ZED and the second closest tag must be at least 70 cm apart to achieve reliable personal identification.

A Simple and Fast Anti-collision Protocol for Large-scale RFID Tags Identification

  • Jia, Xiaolin;Feng, Yuhao;Gu, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1460-1478
    • /
    • 2020
  • This paper proposes a novel anti-collision protocol for large-scale RFID tags identification, named Bi-response Collision Tree Protocol (BCT). In BCT, two group of tags answer the reader's same query in two response-cycles respectively and independently according to the bi-response pattern. BCT improves the RFID tag identification performance significantly by decreasing the query cycles and the bits transmitted by the reader and tags during the identification. Computation and simulation results indicate that BCT improves the RFID tag identification performance effectively, e.g. the tag identification speed is improved more than 13.0%, 16.9%, and 22.9% compared to that of Collision Tree Protocol (CT), M-ary Collision Tree Protocol (MCT), and Dual Prefix Probe Scheme (DPPS) respectively when tags IDs are distributed uniformly.

A Study on the RFID Tag-Floor Based Navigation (RFID 태그플로어 방식의 내비게이션에 관한 연구)

  • Choi Jung-Wook;Oh Dong-Ik;Kim Seung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.968-974
    • /
    • 2006
  • We are moving into the era of ubiquitous computing. Ubiquitous Sensor Network (USN) is a base of such computing paradigm, where recognizing the identification and the position of objects is important. For the object identification, RFID tags are commonly used. For the object positioning, use of sensors such as laser and ultrasonic scanners is popular. Recently, there have been a few attempts to apply RFID technology in robot localization by replacing the sensors with RFID readers to achieve simpler and unified USN settings. However, RFID does not provide enough sensing accuracy for some USN applications such as robot navigation, mainly because of its inaccuracy in distance measurements. In this paper, we describe our approach on achieving accurate navigation using RFID. We solely rely on RFID mechanism for the localization by providing coordinate information through RFID tag installed floors. With the accurate positional information stored in the RFID tag, we complement coordinate errors accumulated during the wheel based robot navigation. We especially focus on how to distribute RFID tags (tag pattern) and how many to place (tag granularity) on the RFID tag-floor. To determine efficient tag granularities and tag patterns, we developed a simulation program. We define the error in navigation and use it to compare the effectiveness of the navigation. We analyze the simulation results to determine the efficient granularities and tag arrangement patterns that can improve the effectiveness of RFID navigation in general.

Unforgeable RFID Tag Variable ID Scheme with Efficient Identification (효율적인 식별 기능을 가진 위조 불가 RFID Tag 가변 ID 방식)

  • Choi, Jae-Gwi;Park, Ji-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.11C no.4
    • /
    • pp.447-454
    • /
    • 2004
  • This paper proposes unforgeable RFID variable n scheme with efficient identification. The existing schemes on privacy protection are in efficient because a server should execute identification process with all Tag ID's Information in order to identify a certain Tag. Moreover these schemes have the serious problem that an attacker can forge special tags if he can know tag's secret information stored in the server's database. Our scheme Is required only 2 times exponent computation to identify a tag. The proposed scheme is also secure against leakage of tags information stored in a database, because an attacker cannot forge special tag even if he knows secret information of the server(database).

On the Accuracy of RFID Tag Estimation Functions

  • Park, Young-Jae;Kim, Young-Beom
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • In this paper, we compare the accuracy of most representative radio frequency identification (RFID) tag estimation functions in the context of minimizing RFID tag identification delay. Before the comparisons, we first evaluate the accuracy of Schoute's estimation function, which has been widely adopted in many RFID tag identification processes, and show that its accuracy actually depends on the number of tags to be identified and frame size L used for dynamic frame slotted Aloha cycles. Through computer simulations, we show how the accuracy of estimation functions is related to the actual tag read performance in terms of identification delay.

An Efficient Tag Identification Algorithm Using Improved Time Slot Method (개선된 타임 슬롯 방법을 이용한 효과적인 태그 인식 알고리즘)

  • Kim, Tae-Hee;Kim, Sun-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • In recent year, the cores of ubiquitous environment are sensor networks and RFID systems. RFID system transmits the electronic information of the tag to the reader by using RF signal. Collision happens in RFID system when there are many matched tags, and it degrades the tag identification performance. Such a system needs algorithm which is able to arbitrate tag collision. This paper suggests a hybrid method which reduces collision between the tags, and can quickly identify the tag. The proposed method operates based on certainty, which takes an advantage of tree based algorithm, and to reduce collision it selects transmission time slot by using tag ID. The simulation results show the suggested method has higher performance in the number of queries and collision compared to other tree based and hybrid algorithms.

A Study on Implementation of Passive RFID Tag System Using A Capacitive method (Capacitive방식을 이용한 Passive RFID Tag System 구현)

  • 배명수;여영호;손수국
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.199-202
    • /
    • 2002
  • This paper is about the implementation of Passive RFID(Radio Frequency Identification) tag system using a capacitive method, and explains the design and circuit's structure of this system. Fundamentally the capacitive RFID tag system consists of a tag reader, a passive tag and a host computer. And then this paper shows the system's prototype which analyzes a specification, and suggests the passive RFID system as a new method which manufactures a low cost tag system easily

  • PDF

RFID Tag Protection using Face Feature

  • Park, Sung-Hyun;Rhee, Sang-Burm
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.59-63
    • /
    • 2007
  • Radio Frequency Identification (RFID) is a common term for technologies using micro chips that are able to communicate over short-range radio and that can be used for identifying physical objects. RFID technology already has several application areas and more are being envisioned all the time. While it has the potential of becoming a really ubiquitous part of the information society over time, there are many security and privacy concerns related to RFID that need to be solved. This paper proposes a method which could protect private information and ensure RFID's identification effectively storing face feature information on RFID tag. This method improved linear discriminant analysis has reduced the dimension of feature information which has large size of data. Therefore, face feature information can be stored in small memory field of RFID tag. The proposed algorithm in comparison with other previous methods shows better stability and elevated detection rate and also can be applied to the entrance control management system, digital identification card and others.

  • PDF