• Title/Summary/Keyword: RFID protocol

Search Result 449, Processing Time 0.024 seconds

Improving an RFID Mutual Authentication Protocol using One-time Random Number (개선한 일회성 난수를 이용한 RFID 상호인증 프로토콜)

  • Yoon, Eun-Jun;Yoo, Kee-Young
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • In 2008, Kim-Jun proposed a RFID mutual authentication protocol using one-time random number that can withstand malicious attacks by the leakage of important information and resolve the criminal abuse problems. Through the security analysis, they claimed that the proposed protocol can withstand various security attacks including the replay attack. However, this paper demonstrates that Kim-Jun' s RFID authentication protocol still insecure to the replay attack. In addition, this paper also proposes a simply improved RFID mutual authentication protocol using one-time random number which not only provides same computational efficiency, but also withstands the replay attack.

Security Enhancing of Authentication Protocol for Hash Based RFID Tag (해쉬 기반 RFID 태그를 위한 인증 프로토콜의 보안성 향상)

  • Jeon, Jin-Oh;Kang, Min-Sup
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.23-32
    • /
    • 2010
  • In this paper, we first propose the security enhancing of authentication protocol for Hash based RFID tag, and then a digital Codec for RFID tag is designed based on the proposed authentication protocol. The protocol is based on a three-way challenge response authentication protocol between the tags and a back-end server. In order to realize a secure cryptographic authentication mechanism, we modify three types of the protocol packets which defined in the ISO/IEC 18000-3 standard. Thus active attacks such as the Man-in-the-middle and Replay attacks can be easily protected. In order to verify effectiveness of the proposed protocol, a digital Codec for RFID tag is designed using Verilog HDL, and also synthesized using Synopsys Design Compiler with Hynix $0.25\;{\mu}m$ standard-cell library. Through security analysis and comparison result, we will show that the proposed scheme has better performance in user data confidentiality, tag anonymity, Man-in-the-middle attack prevention, replay attack, forgery resistance and location tracking.

Design of protocol for RFID/USN security (RFID/USN 보안을 위한 프로토콜 설계)

  • Park, Sang-Hyun;Park, Sang-Min;Shin, Seung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.103-109
    • /
    • 2007
  • Payment and security requirement are playing an increasingly critical role in RFID system, allegedly the core of the ubiquitous, especially in logistics. Therefore, security technology has been playing essential role gradually unlike the past when only the perception of equipment was considered important technology. The current encoding system allows the access only to the user who has the secret key. Many encoding algorithm has been studied to ensure the security of secret key. Security protocol is the most typical way to authorize appropriate user perception by using the data and secret key to proceed the encoding and transmit it to the system in order to confirm the user. However, RFID system which transmits more than dozens of data per second cannot be used if the algorithm and protocol of the existing wired system are used because the performance will degrade as a consequence. Security protocol needs to be designed in consideration of property of RFID and hardware. In this paper, a protocol was designed using SNEP(Sensor Network Encryption Protocol), the security protocol used for the sensor similar to RFID- not the current system used in wired environment- and ECC (Elliptic Curve Cryptography: oval curve encoding), the encoding algorithm.

RFID Mutual Authentication Protocol with Security and Performance Improvements (안전성과 성능을 개선한 RFID 상호인증 프로토콜)

  • Hong, Sung-Hyuk;Park, Jong-Hyuk;Yeo, Sang-Soo;Ha, Kyung-Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.876-883
    • /
    • 2009
  • In 2008, Kim-Jun proposed RFID Mutual Authentication Protocol based on One-Time Random Numbers which are strong in Eavesdropping Attack, Spoofing attack and Replay attack. However, In 2009, Yoon-Yoo proved that it was weak in Replay attack and proposed a protocol which can prevent Replay attack. But Yoon-Yoo's protocol has problems that efficiency on communication and Brute-force attack. This paper shows weak points of Yoon-Yoo's protocol and proposes an RFID mutual authentication protocol with security and performance improvements.

  • PDF

RFID Distance Bounding Protocol Secure Against Mafia and Terrorist Fraud (테러리스트 공격과 마피아 공격에 안전한 RFID 거리 제한 프로토콜)

  • Kwon, Hye Jin;Kim, Soon Ja
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.660-674
    • /
    • 2014
  • RFID system has been used in a variety of services. So, a lot of attacks like a free ride on the service, leakage of property or personal information are known. Therefore, the solutions that address these attacks have been proposed. Among the attacks, mafia fraud, a kind of relay attack, can not be addressed by common authentication protocol. So, Hancke and Kuhn used distance bounding protocol for RFID authentication. After that, Munilla and Peinado modified HK protocol by adding void challenge. So the mafia fraud success probability of adversary is lower than probability of HK protocol. Ahn et al. proposed a protocol that reduces number of a hash computation and traffic than MP protocol. Here, we show that MP protocol can not defend the terrorist fraud and is vulnerable to noise. And we show that also AYBN protocol is vulnerable to mafia fraud and key leakage. Moreover, we propose a new protocol and our experimental results show that our protocol is secure to terrorist and mafia fraud.

An Authentication Protocol using the EXOR and the Hash Function in RFID/USN (RFID/USN에서의 EXOR과 해쉬 함수를 이용한 인증 프로토콜)

  • Shin, Jin-Seob;Park, Young-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2007
  • The essential factor of ubiquitous is security technology to properly prepare making possible network access, economic and convenient information exchange. This paper proposes an authentication protocol for RFID as one technology to realize such an ubiquitous. The proposed protocol used only the EXOR and the hash function operations reduces operations at RFID tag, which improves stability compared to existing protocols.

  • PDF

Multi-Protocol RFID Reader SoC Design (Multi-Protocol RFID Reader SoC 설계)

  • Ki, Tae-Hun;Bae, Gyu-Sung;Kim, Jong-Bae;Moon, Jeon-Il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.667-668
    • /
    • 2006
  • Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. RFID systems is coming into increasing use in industry and logistics. This paper discuses implementation of multi-protocol RFID reader SoC. The SoC contains multi-protocol RFID RFID reader, CPU, UART, memory.

  • PDF

Hash-based Mutual Authentication Protocol for RFID Environment (RFID 환경을 위한 해시기반 상호인증 프로토콜)

  • Jeon, Dong-Ho;Kim, Hae-Moon;Kwon, Hye-Jin;Kim, Soon-Ja
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.42-52
    • /
    • 2010
  • Recently, Ahn et al proposed an improved authentication protocol using the hash function in RFID environment. Their proposed protocol provide the following three merits; it reduces the computational costs of RFID tag. itrfduces the communication overhead between the reader and the tag. it protects the user privacy. However, this paper points out that does not authenticate the legality of the RFID reader and database. this paper proposes an improved mutual authentication protocol that can provide the mutual authenticaion.

A Secure RFID Multi-Tag Search Protocol Without On-line Server (서버가 없는 환경에서 안전한 RFID 다중 태그 검색 프로토콜)

  • Lee, Jae-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.405-415
    • /
    • 2012
  • In many applications a reader needs to determine whether a particular tag exists within a group of tags without a server. This is referred to as serverless RFID tag searching. A few protocols for the serverless RFID searching are proposed but they are the single tag search protocol which can search a tag at one time. In this paper, we propose a multi-tag search protocol based on a hash function and a random number generator which can search some tags at one time. For this study, we introduce a protocol which can resolve the problem of synchronization of seeds when communication error occurs in the S3PR protocol[1], and propose a multi-tag search protocol which can reduce the communication overhead. The proposed protocol is secure against tracking attack, impersonation attack, replay attack and denial-of-service attack. This study will be the basis of research for multi-tag serach protocol.

An RFID Authentication Protocol based Symmetric Key using Hashed Tag ID (해쉬된 태그ID와 대칭키 기반의 RFID 인증프로토콜)

  • Park, Yong-Soo;Shin, Ju-Seok;Choi, Myung-Sil;Chung, Kyung-Ho;Ahn, Kwang-Seon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.669-680
    • /
    • 2009
  • By identifying the unique information of the objects using the RF, the RFID technique which will be able to manage the object is spot-lighted as the main technology in Ubiquitous era. On RFID systems, since the information of RFID may easily be unveiled in air, the secure and privacy problems always exist. In this paper, we propose mutual authentication protocol based on symmetric key. Proposed protocol has been able to minimize the tag's H/W resource by using symmetric key. And we use tag ID which is encrypted with hash function and a shared symmetric key by Challenge-Response pair of PUF(Physically Unclonable Function), thus there is no key disclosure problem in our protocol.