• Title/Summary/Keyword: RFID error

Search Result 106, Processing Time 0.021 seconds

Efficient Localization of a Mobile Robot Using Spatial and Temporal Information from Passive RFID Environment (수동 RFID 환경에서의 공간/시간 정보를 이용한 이동로봇의 효율적 위치 추정 기법)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.164-172
    • /
    • 2008
  • This paper presents the efficient localization of a mobile robot traveling on the floor with tags installed, using the spatial and temporal information acquired from passive RFID environment. Compared to previous research, the proposed localization method can reduce the position estimation error and also cut down the initial cost tag installation cost. Basically, it is assumed that a mobile robot is traveling over a series of straight line segments, each at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, the velocity and position estimation of a mobile robot starting from a known position, which is valid for all segments except the first one. Second, for the first segment in which the starting position is unknown, the velocity and position estimation is made possible by enforcing a mobile robot to traverse at least two tags at a constant velocity with the steering angle unchanged. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

  • PDF

RFID Tag Detection on a Water Content Using a Back-propagation Learning Machine

  • Jo, Min-Ho;Lim, Chang-Gyoon;Zimmers, Emory W.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.1 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • RFID tag is detected by an RFID antenna and information is read from the tag detected, by an RFID reader. RFID tag detection by an RFID reader is very important at the deployment stage. Tag detection is influenced by factors such as tag direction on a target object, speed of a conveyer moving the object, and the contents of an object. The water content of the object absorbs radio waves at high frequencies, typically approximately 900 MHz, resulting in unstable tag signal power. Currently, finding the best conditions for factors influencing the tag detection requires very time consuming work at deployment. Thus, a quick and simple RFID tag detection scheme is needed to improve the current time consuming trial-and-error experimental method. This paper proposes a back-propagation learning-based RFID tag detection prediction scheme, which is intelligent and has the advantages of ease of use and time/cost savings. The results of simulation with the proposed scheme demonstrate a high prediction accuracy for tag detection on a water content, which is comparable with the current method in terms of time/cost savings.

A Study on the Reliability Improvement of RFID System (RFID System의 신뢰성 향상에 관한 연구)

  • Ham Jung-Gi;Kwon Oh-Heung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.542-545
    • /
    • 2006
  • In recent years, RFID is widely used in Industrial applications including factory, material flow, logistics and defense areas. In this paper, we developed a RFID baseband system with ASK modulation and convolutional channel code. A commercial ASK RF module is used and its frequency range in $350\sim351MHz$ and power is 10mW and the convolution code is constraint length k=3 and rate R=1/2. The performance is measured by frame error rate and the convolutional code is very useful in performance improvement and, also we implemented the binary search algorithm as anti-collision method and we show the wave shapes whit collision occurrence. This RFID system is designed by FPGA therefore it produces result of speed-up and improvement of reliability.

  • PDF

RFID Based Mobile Robot Docking Using Estimated DOA (방향 측정 RFID를 이용한 로봇 이동 시스템)

  • Kim, Myungsik;Kim, Kwangsoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.9
    • /
    • pp.802-810
    • /
    • 2012
  • This paper describes RFID(Radio Frequency Identification) based target acquisition and docking system. RFID is non-contact identification system, which can send relatively large amount of information using RF signal. Robot employing RFID reader can identify neighboring tag attached objects without any other sensing or supporting systems such as vision sensor. However, the current RFID does not provide spatial information of the identified object, the target docking problem remains in order to execute a task in a real environment. For the problem, the direction sensing RFID reader is developed using a dual-directional antenna. The dual-directional antenna is an antenna set, which is composed of perpendicularly positioned two identical directional antennas. By comparing the received signal strength in each antenna, the robot can know the DOA (Direction of Arrival) of transmitted RF signal. In practice, the DOA estimation poses a significant technical challenge, since the RF signal is easily distorted by the surrounded environmental conditions. Therefore, the robot loses its way to the target in an electromagnetically disturbed environment. For the problem, the g-filter based error correction algorithm is developed in this paper. The algorithm reduces the error using the difference of variances between current estimated and the previously filtered directions. The simulation and experiment results clearly demonstrate that the robot equipped with the developed system can successfully dock to a target tag in obstacles-cluttered environment.

The Privacy Protection Mechanism Applicable to Private Zone of Mobile RFID Systems (모바일 RFID 시스템의 Private Zone에 적용 가능한 프라이버시 보호 기법)

  • Kim, Dong-Chul;Chun, Ji-Young;Choi, Eun-Young;Lee, Dong-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Mobile RFID system is a next generation technology which combines the existing RFID systems with mobile systems. It is newly expected to provide additional services and will be broadly used in everyday life; however, it sometimes causes the privacy or security problems generated by existing RFID systems and the additional privacy or security problems. Moreover, even if many methods have been proposed to solve those problems, it is still difficult to adapt to reality or to guarantee the security perfectly. Therefore, in this paper, we propose the secure and practicable privacy protection mechanism suitable to mobile RFID systems. proposing mechanism is applicable the mechanism to Private Zone of mobile RFID systems which require to protect the privacy. This mechanism suggests that own tagging-products needed to protect privacy using mobile reader of personal don't provide any information to other readers except their own reader. In addition to, proposing mechanism is the efficient mechanism which largely reduces the process to maintain the synchronization when happen to the DoS attack or system error.

Design and Implementation of a 13.56 MHz RFID System (13.56 MHz RFID 시스템 설계 및 구현)

  • Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • This paper presents a 13.56 MHz RFID reader that can be used as a door-lock system for smart home security. The RFID reader consists of a transmitter, a receiver, and a data processing block. To verify the operation of the developed RFID reader, we present both a PSPICE simulation for transmitter/receiver and a digital simulation for data processing block. In particular, a CRC block for error detection of received data and a Manchester decoding block for position detection of collided data are designed using VHDL. In addition, we applied a binary search algorithm for multi-tag anti-collision. The anti-collision procedure is carried out by PIC microcontroller on software. The experimental results show that the developed reader can provide the right multi-tag recognition.

  • PDF

A Study on RFID Application Method in Franchise Business (프랜차이즈산업에서의 RFID 적용 방법에 대한 연구)

  • Rim, Jae-Suk;Choi, Wean-Yang
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • At present, companies write daily work record or use bar-code in order to collect distribution flow data in real time. However, it needs additional works to check the record or read the bar-code with a scanner. In this case, human error could decrease accuracy of data and it would cause problems in reliability. To solve this problem, RFID (Radio Frequency Identification) is introduced in many automatic recognition sector recently. RFID is a technology that identification data is inserted into micro-mini IC chip and recognize, trace, and manage object, animal, or person using wireless frequency. This is being emerged as the core technology in future ubiquitous environment. This study is intended to suggest RFID application method in franchise business. Traceability and visibility of individual product are supplied based on EPCglobal network. It includes DW system which supplies various assessment data about product in supply chain, financial transaction system which is based on product transaction and position information, and RFID middleware which refines and divides product data from RFID tag. With the suggested application methods, individual product's profile data are supplied in real time and it would boost reliability to customer and make effective cooperation with existing operation systems (SCM, CRM, and e-Business) possible.

Collecting Travel Time Data of Mine Equipments in an Underground Mine using Reverse RFID Systems (Reverse RFID 시스템을 이용한 지하광산에서의 장비 이동시간 측정)

  • Jung, Jihoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • In this study, travel time data collection of mine equipments was conducted in an underground mine using a reverse Radio Frequency IDentification (RFID) system. In the reverse RFID system, RFID readers and antennas are mounted on mine equipments, and RFID tags are attached to the underground mine gallery. Indoor experiments were performed to analyze how RFID reader transmission power levels affect tag readable area and tag recognition rates. The results showed that travel time measurement become precise when the reader transmission power was reduced, however tag recognition rates were reduced. The field experiments indicated that setting the reader transmission power to 28 dBm maintained the tag recognition rate while minimizing the tracking location error. In addition, the results revealed that the reverse RFID system can be used successfully in an underground mine to collect the travel time data of haulage trucks.

A Study on Train Position Detection and Reliability Assessment Using RFID (RFID 기반 열차위치검지 및 신뢰도 향상에 관한 연구)

  • Lee, Sang-Kyung;Ha, Kwan-Yong;Yoo, Guen-Gyu;Suh, Seog-Chul;Park, Jong-Hun;Kim, Gi-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.226-231
    • /
    • 2011
  • This research was done to prove the optimal position to detect a train reader when using a multiple fusion sensor. The experiment was done using four Train installed RFID Readers located on the train. These readers were read by sensors installed at intervals of 50 meters on the up and down sections of the Line 8, from Amsa station to Moran station. We analyze errors in the recognition range according to the Tag's number of recognition due to RFID of train speed, and propose a method of estimation for an accurate estimation of the position of train At this the Least-Squares Method is applied to judge the position of train accurately from the error because of Tag's number of recognition and RFID of train speed. also It is verified through simulation.

  • PDF

RFID Based Indoor Localization and Effective Tag Arrangement Method (RFID를 기반으로 한 실내 위치 파악 및 효율적 Tag 배치)

  • Yoon, Chang-Sun;Yoon, Dong-Min;Kwon, Young-Chan;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8760-8766
    • /
    • 2015
  • In this paper a technology which gives directions to people and also localization of the robotic vacuum cleaners inside some spacious buildings is developed. For this purpose, it is confirmed that which pattern has a small error in dealing with the indoor localization with various RFID tag arrangements attached on the ground. This experiment was conducted by using MT92(900MHz range Antenna) and ALR 9900+(Reader). As a result, the square arrangement has the least error, 21.19cm, among other patterns which are diamond, rectangle and regular hexagon. However, it is necessary to consider the number of tags in the unit area, from this point of view the regular hexagon arrangement is the most efficient arrangement among other patterns because it needs only 6 tags in the unit area.