• Title/Summary/Keyword: RF-EMF

Search Result 12, Processing Time 0.028 seconds

Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure

  • Kim, Ju Hwan;Yu, Da-Hyeon;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.179-188
    • /
    • 2017
  • With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether shortterm exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System

  • Kim, Ju Hwan;Lee, Jin-Koo;Kim, Hyung-Gun;Kim, Kyu-Bong;Kim, Hak Rim
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.265-275
    • /
    • 2019
  • Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.

Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus

  • Kim, Ju Hwan;Sohn, Uy Dong;Kim, Hyung-Gun;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.277-289
    • /
    • 2018
  • The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.

The Effect of Sub-chronic Whole-Body Exposure to a 1,950 MHz Electromagnetic Field on the Hippocampus in the Mouse Brain

  • Son, Yeonghoon;Jeong, Ye Ji;Kwon, Jong Hwa;Choi, Hyung-Do;Pack, Jeong-Ki;Kim, Nam;Lee, Yun-Sil;Lee, Hae-June
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.151-157
    • /
    • 2015
  • The increasing use of mobile phones has raised public concern about the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on the human brain. To investigate the potential effect of RF-EMF exposure on the brain, we examined the behaviors and hippocampal morphology of C57BL/6 mice after sub-chronic exposure to RF-EMFs with a relatively high SAR level (5.0 W/kg). We applied a 2-hour daily exposure of WCDMA 1,950 MHz using a reverberation chamber that was designed for whole-body exposure for 60 days. In the behavioral tests, RF-EMF did not alter the physical activity or long-term memory of mice. Moreover, no alteration was found in the neuronal and glial cells in the hippocampus by RF-EMFs. In this study, we showed that sub-chronic whole body RF exposure did not produce memory impairment and hippocampal morphological alteration in C57BL/6 mice.

Effect of Ginseng on Calretinin Expression in Mouse Hippocampus Following Exposure to 835 MHz Radiofrequency

  • Aryal, Bijay;Maskey, Dhiraj;Kim, Myeung-Ju;Yang, Jae-Won;Kim, Hyung-Gun
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2011
  • Exponential rise in the use of mobile communication devices has generated health concerns due to radiofrequency (RF) exposure due to its close proximity to the head. Calcium binding proteins like calretinin regulate the levels of calcium ($Ca^{2+}$) which plays an important role in biological systems. Ginseng is known for maintaining equilibrium in the human body and may play a beneficial radioprotectant role against electromagnetic field (EMF) exposure. In the present study, we evaluated the radioprotective effects of red ginseng (RG) extract in a mouse model. Calretinin (CR) expression was measured using a free-floating immunohistochemical method in the hippocampus of mice after 835 MHz EMF exposure for 5 h/d for 5 d at specific absorption rate=1.6 W/kg for the different experimental groups. The control animals were treated with NaCl while the experimental animals received 10 mg/kg ginseng, or 30 mg/kg; EMF exposed mice were also treated with NaCl, 10 mg/kg ginseng (E10), or 30 mg/kg (E30). Decreases in CR immunoreactivity (IR) along with loss of CA1 and CA3 interneurons and infragranular cells were observed in the ENaCl group while such losses were not observed in the E10 and E30 groups. CR IR significantly increased in the RG-treated group compared to control and EMF-exposed groups treated with NaCl. The study demonstrates that RG extract can serve as a radioprotective agent that maintains $Ca^{2+}$ homeostasis and prevents neuronal loss in the brain hippocampal region caused by RF exposure.

Subjective Symptoms and Physiological Changes of RF Exposure by a Cellular Phone (휴대전화 전자파에 의한 자각증상 및 생리학적 변화)

  • Hong, Hyun-Ki;Ji, Hyo-Chul;Kim, Soo-Chan;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.59-67
    • /
    • 2008
  • Due to the fast increase in cellular phone users, public interest on health effect of electromagnetic fields(EMFs) by cellular phonos is gradually increasing. Some EHS(electromagnetic hypersensitivity) patients complain of psycho-neurophysiological symptoms such as headaches, insomnia, memory loss resulting from RF radiation by CDMA cellular phones. However, EHS is difficult to diagnose and depends on the individual's subjective judgement. And we don't know clearly if the cause of EHS is uneasiness or real exposure. There have been various EHS volunteer studies on heart rate, blood pressure and subjective symptoms using GSM phones. But there are few studies on experimental case-control study investigating physiological parameters, subjective symptoms, and perception of EMFs. In this study, two volunteer groups of 17 self-declared EHS and 19 controls were exposed to both sham and real RF exposure by CDMA cellular phones for half an hour each. We investigated not only the physiological parameters such as heart rates, respiration rates and HRVs(hear rate variability), but also the perception of EMFs and subjective symptoms. As the results, EMF exposure did not have any effects on the subjective symptoms or physiological parameters for both groups. For the EMF perception, there was no evidence that EHS group perceived the EMFs correctly than the control group.

Three Axis Isotropic Field Strength Measuring Antenna (3축 등방성 전계강도 측정 안테나)

  • Choi, Suk-Hwan;Kim, Dong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.879-885
    • /
    • 2014
  • In this paper, we designed and fabricated wideband 3-axis isotropic antenna for the Electro-Magnetic Fields(EMFs) measurement. Each part of proposed 3-axis antenna has isotropic characteristics and arbitrary axis of proposed 3-axis antenna could be selectable using RF switch. Also, a resistor was inserted in each axis of proposed 3-axis antenna for improving antenna gain and noise suppression characteristics, and port impedance of each dipole antenna were matched by balun. For the performance verification of antenna, GTEM Cell which generates standard electromagnetic field was used for the derivation of antenna factor and receiver sensitivity. As a result, fabricated 3-axis isotropic antenna has receiver sensitivity of 0.12~4.2 mV/m and typical VSWR of 3.3:1 within a wide operation frequency range from 0.03 MHz to 3 GHz.

Characteristics of the Detection Voltages of an E-field Sensing Probe in SAR Measurement System (전자파 비흡수율(SAR) 측정용 전기장 프로브의 검파 전압 특성)

  • Gimm Youn-Myoung;Lee Seung-Bae;Kim Ki-Hwea
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.217-221
    • /
    • 2005
  • The E-field intensity by mobile handsets in a phantom is measured by a 3 axes miniature probe. The detected DC voltage by a Schottky diode in a probe has nonlinear characteristics by itself. If a pertinent diode compression point (DCP) is applied for the compensation specific absorption rate(SAR) as much as 200 W/kg can be measured with a good measurement accuracy.

Oxygen detection of sensor cells based on YSZ (Yttria-Stabilized Zirconia) thin films (YSZ(yttria-stabilized zirconia) 박막을 이용한 센서 셀의 산소 감응)

  • 박준용;배정운;황순원;김기동;조영아;전진석;최동수;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.507-513
    • /
    • 1999
  • 8mol%-yttria-stabilized zirconia(YSZ) thin films as oxygen ion conductor were deposited by rf-magnetron sputtering, and the oxygen gas sensors with the structure of $SiO_2$ substrate/Ni-NiO mixed reference layer/Pt/YSZ/Pt were fabricated and their oxygen sensing properties were investigated. The steady-state electro-motive force (EMF) values were measured as a function of oxygen partial pressure ($PO_2;form 1.013\times10^3 \textrm{Pa \;to}\; 1.013\times10^5$Pa) and operating temperature ($300^{\circ}C$ to $700^{\circ}C$). The fabricated YSZ oxygen sensor showed the best oxygen sensing properties at 50$0^{\circ}C$. However, oxygen sensing properties were very low at the temperature lower than 30$0^{\circ}C$ due to the lack of oxygen ion mobility and at the temperature higher than $700^{\circ}C$ due 새 intermixing of materials between the layers. Especially, the YSZ sensor operating at $500^{\circ}C$ and oxygen partial pressure above $1.565\times10^4$Pa showed the oxygen sensing properties close to the values predicted by ideal Nernst equation.

  • PDF

YSZ(yttria-stablilized ziroconia) 박막을 이용한 센서셀의 산소감응

  • 배정운;박준용;황순원;김기동;조영아;전진석;최동수;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.128-128
    • /
    • 1999
  • 산소이온 전도체로 잘 알려진 Yttira-Stabilizd Ziroconia(TSZ)는 연료전지, oxygen pumps, chemical gas sensor 등 다양한 electrochemical divices에 이용되는 고체 전해질의 하나이다. 특히 YSZ는 oxygen 및 oxygen과 평형상태에 있는 gas들을 검출하는 sensor의 electrolyte로서 가장 많이 쓰이고 있다. 현재 상용화되어 있는 YSZ Sensor는 전통적인 bulk 형태의 ceramic으로 제작된 것으로 충분한 ionic conductivity를 얻기 위해서는 $600^{\circ}C$이상의 operating temperature를 필요로 하나 YSZ를 박막으로 제조시 낮은 operating temperature를 뿐만 아니라 sensor의 소형화, 낮은 ohmic loss 및 다양한 응용이 가능한 장점을 가질 수 있다. 본 실험에서는 산소 이온 전도체로서 8mol%-YSZ 고체전해질을 RF-magnetron bias sputtering 법을 이용하여 증착하였다. 제조된 YSZ 박막을 이용한 산소감응 센서셀 구조는 SiO2/Ni-NiO/Pt/YSZ/Pt-기판이다. 센서셀의 정상상태에서의 기전력(electromotive force ; EMF)을 산소분압(Po:1.013$\times$103Ta ~1.013$\times$105Pa)과 측정온도(30$0^{\circ}C$~$700^{\circ}C$)를 변화시키며 측정하였다. 이론적인 기전력과 측정값 사이의 편차는 Po:1.565$\times$104Pa 이하의 산소분압에서는 컸지만 이 이상의 분압에서는 이론치에 근접한 값을 가졌다. 증착한 YSZ와 Ni-NiO 박막의 구조는 X-ray diffractometer(XRD)를 이용하여 결정구조를 알아 보았고, TSZ 박막의 표면 morphology 관찰은 Scanning electron microscopy(SEM) 이용하였다. 박막의 조성분석은 X-ray energy dispersive analysis(EDX)을 사용하였다.

  • PDF