• Title/Summary/Keyword: RF seeker

Search Result 50, Processing Time 0.019 seconds

Method for Recognition and Generation of High Precision Range Delay in High Range Resolution Pulse Radar (고해상도 펄스 레이더에서 고정밀 거리 지연 인식 및 생성 방법)

  • Hong, Young-Gon;Kim, Sang-Ho;Kim, Yoon-Jin;Woo, Soen-Koel;Lee, Man-Hee;Ahn, Se-Hwan;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2020
  • We discuss the method of a high precision range trigger and generation for a high range resolution radar. To verify the designed range resolution performance, we use test-equipments which can absolutely make a precision range shorter than the desined range resolution. The accuracy of generated range is proportional to the system reference clock. However, the system main processor is limited to input reference clocks and a higher available one is expensive in the conventional method. To solve this problem, we proposed that the range trigger and generation method using multi-phase-shiftings and integration. Through a experiment, we verified that the proposed method made problems which can be ocurred in the conventional method clear.

Design of Temperature Compensation Circuit for W-band Radar Receiver (W-band 레이더 수신기용 온도보상회로 설계)

  • Lee, Dongju;Kim, Wansik;Kwon, Jun-Beom;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2020
  • In this paper, a temperature compensation circuit is presented in order to mitigate gain variability due to temperature in the W-band low-noise amplifier (LNA). The proposed cascode temperature compensation bias circuit automatically controls gate bias voltages of the common-source LNA in order to suppress variations of small-signal gain. The designed circuit was realized in a 100-nm GaAs pHEMT process. The simulated voltage gain of W-band LNA including the proposed bias circuit is >20 dB with gain variability less than ±0.8 dB in the range of temperatures between -35 to 71℃. We expect that the proposed circuit contributes to millimeter-wave receivers for stable performances in radar applications.

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.

Developed power supply for small Millimeterwave(Ka band) radar (소형 밀리미터파(Ka 밴드) 레이다용 전원공급기 개발)

  • Kim, Hong-Rak;Woo, Seon-Keol;Lee, Young-Soo;Kim, Youn-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.197-202
    • /
    • 2019
  • A small millimeter-wave tracking radar power supply must provide stable power with minimal ripple noise and the switching frequency noise of the DC-DC converter must have a real-time self-test capability through on-the-fly monitoring without causing false alarms and ghost In this study, we developed a multi-output switching power supply with output power of more than 80% (@ 100% load) and 10 output power by adopting + 28VDC input for application to small millimeter wave tracking radar, DC-DC converter is applied for large power output and multi-output flyback method is applied for the remaining small power output. The test results show that 85% efficiency efficiency is achieved under 100% load condition.

Development of High-Speed Real-Time Signal Processing Unit for Small Millimeter-wave Tracking Radar (소형 밀리미터파 추적 레이다용 고속 실시간 신호처리기 개발)

  • Kim, Hong-Rak;Park, Seung-Wook;Woo, Seon-Keol;Kim, Youn-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • A small millimeter-wave tracking radar is a pulse-based radar that searches, detects, and tracks a target in real time through a TWS (Track While Scan) method for a traps target on the sea with a large RCS running at low speed. It is necessary to develop a board equipped with a high-speed CPU to acquire and track target information through LPRF, DBS, and HRR signal processing techniques for a trap target operating various kinds of dexterous objects such as chaff and decoy, We designed a signal processor structure including DFT (Discrete Fourier Transform) module design that can perform real - time FFT operation using FPGA (Field Programmable Gate Array) and verified the signal processor implemented through performance test.

Development of Power Supply for Millimeter-wave Tracking Radars (밀리미터파 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;Choi, Jinkyu;Joo, Ji-Han;Kwon, Jun-Beom;Byun, Young-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • Millimeter-wave tracking radars should be operated in various environmental restrictions, thus they demand more computing power and smaller size compared to conventional tracking radars. This paper presents the design and implementation of the compact power supply for millimeter-wave tracking radar applications. To meet requirements of low voltage/high current and voltage accuracy for FPGA/DSP digital circuits, Point of Load (POL) converters are used in order to enhance power density and system efficiency. LDO (Low Dropout) is applied for the output voltage under the light load condition, then the single-input-multi-output power supply with max power of 375 W and 8 outputs is developed. The proposed power supply achieves output voltage accuracy of ±2 % and noise level of <50 mVpp % under full load conditions.

Electromagnetic Susceptibilty design of High-Speed Image Signal Processing Unit for Small Infrared Image Homing sensor (적외선 영상 호밍센서 고속 영상신호처리기의 전자기파 내성 설계)

  • Kim, Hong-Rak;Park, Jin-Ho;Kim, Kyoung-Il;Jeon, Hyo-won;Shin, Jung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.27-33
    • /
    • 2022
  • The small infrared image homing sensor is the eye of a guided weapon that has an infrared image sensor that identifies a target on the ground through day and night infrared image processing and searches, detects, and tracks the target. Inside the guided weapon since the power supply and communication line are used together with various components, the part against electromagnetic wave interference is very important. In particular, the effect of CE (Conducted Emission) through the power and communication lines connected by cables is very important. Through this method, it is possible to directly affect other components of the guided weapon. In this paper, the EMI filter and cable design for avoiding electromagnetic interference to the power input through the cable and the communication line are described. Also, the designed EMI filter is manufactured After the CE102 test of MIL-STD-461G, design satisfaction will be explained.

Radiator Design Method considering Wide-Angle Beam Steering Characteristics of AESA Radar (AESA 레이더 광각 빔조향 특성을 고려한 복사소자 설계 기법)

  • Kim, Young-Wan;Chae, Hee-Duck;An, Se-Hwan;Joo, Ji-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.87-92
    • /
    • 2022
  • In this paper, a study was conducted on the design of an array element that can be applied to the AESA radar for seeker. An antenna for application to AESA radar should choose an optimal radiation element to be applied to an array antenna in order to secure electronical beam steering characteristics, and consider beam steering characteristics when designing. In particular, in order to satisfy the wide-angle beam steering characteristics, the wide-angle impedance matching technique should be used to minimize the scan blindness region that may occur during wide-angle steering. As such, securing the stability of system operation is becoming an important design consideration for AESA radar. In this paper, WAIM is applied to the end of the radiation element to improve the characteristics of the radiation element applied to the AESA radar antenna device, and the change in the performance of the active reflection coefficient, which is a stable operation index of the system, is reviewed. The final performance result verified the validity of the proposed method by mathematically synthesizing the simulation data.

Development of Power Supply for Small Anti-air Tracking Radar (소형 대공 추적레이다용 전원공급기 개발)

  • Kim, Hongrak;Kim, Younjin;Lee, Wonyoung;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.119-125
    • /
    • 2022
  • The power supply for the anti-aircraft radar homing sensor should allow the system to receive power quickly and stably without the influence of noise. For this purpose, DC-DC converters are widely used for reliable power conversion. Also, switching of DC-DC converters Frequency noise should not cause false alarms and ghosts that may affect the detection and tracking performance of the system, and it should have a check function that can monitor power in real time while the homing sensor is operating. In order to apply to anti-aircraft radar homing sensor, we developed a multi-output switching power supply with maximum output 𐩒𐩒𐩒 W, efficiency 80% or more (@100% load), output power by receiving 28VDC input, and power supply to achieve more than 80% efficiency. A DC-DC converter was applied to this large output, and the multi-output flyback method was applied to the rest of the low-power output.

Design of W-band Microstrip-to-Waveguide Transition Structure Using Fin-line Taper (Fin-line taper를 이용한 W-대역 마이크로스트립-도파관 전이구조 설계)

  • Kim, Young-Gon;Yong, Myung-Hun;Lee, Hyeonkeon;Joo, Ji-Han;An, Se-Hwan;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • A high-performance wideband transition from microstrip to waveguide is proposed. This transition is designed by consideration of gradual field transformation and optimal impedance matching between microstrip line and fin-line. Clear design guidelines of proposed transition using fin-line taper with offset DSPSL (double-sided parallel stripline) are provided to determine the transition shape and the transition length. The fabricated transition exhibits less than 0.67 dB insertion loss per transition for frequencies from 85 to 108 GHz, and less than 1 dB insertion loss from 83 to over 110 GHz. Proposed transition is expected compact radar and various applications.