• Title/Summary/Keyword: RF power detector

Search Result 51, Processing Time 0.023 seconds

Design of a 960MHz CMOS PLL Frequency Synthesizer with Quadrature LC VCO (960MHz Quadrature LC VCO를 이용한 CMOS PLL 주파수 합성기 설계)

  • Kim, Shin-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.61-67
    • /
    • 2009
  • This paper reports an Integer-N phase locked loop (PLL) frequency synthesizer which was implemented in a 250nm standard digital CMOS process for a UHF RFID wireless communication system. The main blocks of PLL have been designed including voltage controlled oscillator, phase frequency detector, and charge pump. The LC VCO has been used for a better noise property and low-power design. The source and drain juntions of PMOS transistors are used as the varactor diodes. The ADF4111 of Analog Device has been used for the external pre-scaler and N-divider to divide VCO frequency and a third order RC filter is designed for the loop filter. The measured results show that the RF output power is -13dBm with 50$\Omega$ load, the phase noise is -91.33dBc/Hz at 100KHz offset frequency, and the maximum lock-in time is less than 600us from 930MHz to 970MHz.

Ringer's solution detector and transceiver design for efficient manage of patient (효율적인 환자관리를 위한 링거액 감지기 및 송수신기 설계)

  • Song, Je-Ho;Lee, In-Sang;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.45-50
    • /
    • 2016
  • This paper reports a Ringer's solution detector and transceiver design for the efficient management of patients. The ringer's solution detection and transceiver consisted of the main control part, ringer's solution detection part, display and warning light part, wireless transceiver, and power supply part. The light receiving part of the ringer's solution detection part employed TSL260R-LF photodiode; light permeating part, Water-Clear type LED; and wireless transceiver part, the RF wireless data transceiver module, NR-FPCX. As a result of this Ringer's solution detector and transceiver design that can manage the patient efficiently, it was found that when the ringer's solution was detected by the double photodiode, the operating frequency was 11.95kHz; when it was not detected, the number was 9.6kHz. In the ringer's solution receiver, when the ringer's solution was detected, the number was 0. The corresponding unique RF code was displayed when not detected. The power used in the ringer's solution detection part was converted to the Sleep mode to operate under battery save mode. The ringer's solution transceiver can exchange wireless communication approximately within a 700m radius.

RF Predistortion Techniques using 2nd Harmonics and Difference Frequency for Linearization of Power Amplifier (전력 증폭기의 선형화를 위해 2차 고조파와 차주파수를 이용한 전치왜곡 기술)

  • 박진상;조경준;장동희;김종헌;이병제;김남영;이종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.356-362
    • /
    • 2003
  • In this paper, we propose a predistortion technique which uses a novel combination of the second harmonic technique and the difference frequency technique to achieve independent control of the 3rd and 5th order intermodulation products generated by the PA. The second harmonic and difference frequency terms are generated using an envelope detector and two frequency multipliers. The RF predistorter has capability to independently control of the 3rd and 5th order intermodulation products so that high power amplifier is optimized for linear characteristics. From the measurement results, over the frequency band 2137.5 MHz to 2142.5 MHz, ACPR reduction of 11 dB is obtained for a single 30 dBm W-CDMA carrier.

A Biomolecular Sensing Platform Using RF Active System

  • Kim, Sang-Gyu;Lee, Hee-Jo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.227-233
    • /
    • 2012
  • This paper describes a novel and compact biosensing platform using an RF active system. The proposed sensing system is based on the oscillation frequency deviation due to the biomolecular binding mechanism on a resonator. The impedance variation of the resonator, which is caused by a specific biomolecular interaction results in a corresponding change in the oscillation frequency of the oscillator so that this change is used for the discrimination of the biomolecular binding, along with concentration variation. Also, a Surface Acoustic Wave (SAW) filter is utilized in order to enhance the biosensing performance of our system. Because the oscillator operates at the skirt frequency range of the SAW filter, a small amount of oscillation frequency deviation is transformed into a large variation in the output amplitude. Next, a power detector is used to detect the amplitude variation and convert it to DC voltage. It was also found that the frequency response of the biosensing system changes linearly with three streptavidin concentrations. Therefore, we expect that the proposed RF biosensing system can be applied to bio/medical applications capable of detecting a nano-sized biomolecular interaction.

A Study on Apparatus of Human Body Antenna for Mine Detection (지뢰탐지용 휴먼바디 안테나 장치 연구)

  • Kim, Chi-Wook;Koo, Kyong-Wan;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.269-272
    • /
    • 2015
  • this is the study of the human body antenna device which can detect the powder in a 360-degree on(under) the ground whether it is metal or nonmetal using superhigh frequency RF beam equipped with the body. and it is able to transmit the data of the detection of the powder, battle combats can share that among them. with its flexible roof radial antenna structure, it emits the superhigh frequency RF beam to the front and flank multiply, preprocesses through the powder preprocessing part. and with the non-linear regression model algorism engine part, reflecting the attenuation characteristics depend on the delayed time of degree of the signal power which is received to the superhigh frequency RF beam. so it is able to detect the signal of the most likely mine or powder based on the degree of the answer signal power according to the delayed time of the superhigh frequency RF beam. also, it can detect the powder whether it is metal or nonmetal, mine, dud, VBIED. it can increase the chance of detection about 90% more than existing mine detector.

Design of IM components detector for the Power Amplifier by using the frequency down convertor (주파수 하향변환기를 이용한 전력증폭기의 IM 성분 검출기 설계)

  • Kim, Byung-Chul;Park, Won-Woo;Cho, Kyung-Rae;Lee, Jae-Buom;Jeon, Nam-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.665-667
    • /
    • 2010
  • In this paper, the method to detect the IM(Inter Modulation) components of power amplifier is proposed by using frequency down-convertor. Output signals of power amplifier which is coupled by 20dB coupler and divided by power divider are applied to RF and LO of the frequency converter. It could be found the magnitude of IM components of power amplifier as a converted DC voltage which is come from the difference between 3th and 5th IM component. The detected DC voltage values are changed from 0.72V to 0.9V when 3rd IM component level changed from -26.4dBm to +2.15dBm and 5th IM component level changed from -34.2dBm to -12.89dBm as the Vgs of 3W power amplifier is changed.

  • PDF

A Design of Attaching the Antenna to USPCS Band FEM (USPCS 대역 FEM 부착 안테나 설계)

  • Gang, Sung-Won;Cheon, Chang-Yul;Kim, Jun-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.768-772
    • /
    • 2007
  • Integration of RF front end module(FEM) into the antenna has been investigated in USPCS band (1.88GHz-1.99GHz). The FEM consists of input filter, power amplifier, coupler, power detector, bias switch and duplexer. The antenna was designed in planar inverted F antenna(PIFA) structure to implement it inside the handset. In order to avoid strong coupling between the antenna and FEM, a shielding ground layer was placed between them. The antenna size is 19mm by 10mm by 6mm under which FEM whose size is 8mm by 5mm by 1.5m locates. The antenna impedance was selected to match to FEM having better efficiency rather than gain since FEM has enough gain whose system spec is minimum of 20dB. The antenna patterns are shown with and without FEM.

Design and Fabrication of Ka-Band Active PIN Diode Limiter for a Millimeter Wave Seeker (밀리미터파 탐색기용 Ka 대역 능동 PIN 다이오드 리미터 설계 및 제작)

  • Yang, Seong-Sik;Lim, Ju-Hyun;Na, Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.220-228
    • /
    • 2012
  • In this paper, we explained the design technique about Ka-band active limiter for protecting the receiver of a millimeter wave seeker. To implement low flat leakage power, we proposed the control circuit of active limiter to control limiter voltage with PRF(Pulse Repetition Frequency) signal and input power. This active limiter consisted of the conventional 2 stage passive limiter, a feedback circuit with a directional coupler, detector, non-inverting amplifier and over-current protection resistance. As the test result of the fabricated Ka-band limiter, it had 1 GHz bandwidth, 3.5 dB insertion loss at the small input power and -7.5 dBm flat leakage at the 4 W RF input power, respectively.

H-Band(220~325 GHz) Transmitter and Receiver for an 1.485 Gbit/s Video Signal Transmission (H-대역(220~325 GHz) 주파수를 이용한 1.485 Gbps 비디오 신호 전송 송수신기)

  • Chung, Tae-Jin;Lee, Won-Hui
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.345-353
    • /
    • 2011
  • An 1.485 Gbit/s video signal transmission system using the carrier frequency of H-band(220~325 GHz) was implemented and demonstrated for the first in domestic. The RF front-end was composed of Schottky barrier diode sub-harmonic mixers(SHM) and frequency triplers, and diagonal horn antennas for transmitter and receiver, respectively. The transmitted carrier frequency of 246 GHz was implemented in the H-band, and LO frequencies of H-band SHM is 120 GHz and 126 GHz for transmit and receive chains, respectively. The modulation scheme is ASK(Amplitude Shift Keying) where IF frequency is 5.94 GHz and the envelop detection was used in heterodyne receiver architecture, and direct detection receiver using ZBD(Zero Bias Detector) was implemented as well. The 1.485 Gbit/s video signal with HD-SDI format was successfully transmitted over wireless link distance of 5 m and displayed on HDTV at the transmitted average output power of 20 ${\mu}W$.

A Study on the Implementation of Exciter in VHF Band (VHF대역 Exciter 구성에 관한 연구)

  • 박순준;황경호;박영철;정창경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.3
    • /
    • pp.239-254
    • /
    • 1988
  • In this paper an exciter which performs modulation and amplification is composed of high power(30dBm) VCO(Voltage Controlled Oscillator) using push-pull circuit. Modulation is FSK using PLL(Phase Locked Loop). A single loop PLL synthesizer having sequency range of 42.5-100.5MHz, 25KHz channel spacing and switching time of 1msec converts down the exciter VCO frequency to 1.25MHz. This signal mixed with the FSK modulated signal coming in the phase detector of exciter. The acquisition time of exciter for frequency hoppng is less than 200usec, so the total acquisition time for transmission is less that 1.5msec. There is no need of additional power amplification because power amlifiction by high power VCO is high enough to communicate within near distance. The proposed frequency synthesizer is not complex so it is suitable for low cost slow frequency hopping spread spectrum communication.

  • PDF