• Title/Summary/Keyword: RF plasmas

Search Result 72, Processing Time 0.072 seconds

The Transient Response of CF$_4$ RF Plasmas Using One-dimensional Fluid Model (1차원 유체모델을 이용한 CF$_4$ RF 플라즈마의 과도응답 특성)

  • 소순열;임장섭
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • $CF_4$ gas is one of the most useful gases in modern technologies for semiconductor fabrication. However, there are many problems which should be solved in order to fabricate semiconductor device, for example, etching speed drop due to ion charge-up and etching selectivity drop due to the high electron energy. One of useful method in order to suppress their damages above is pulsed-time modulated plasma (PM). However, transient responses of charged particles occur when the source power is turned-on and -off in PM method. To control plasma properties in detail, such a transient phenomenon must be investigated. In this paper, we investigate $CF_4$ RF plasma properties under a one-dimensional fluid model. And also for dynamic and stable control of $CF_4$ plasmas, we investigated the transient behavior of the plasmas after step up or down of the amplitude of the power source voltage $V_s$(t). Fundamental properties of transient $CF_4$ plasmas was discussed. Furthermore, we intend to discuss new method for pulsed-time plasma modulation.

Atmospheric Plasma and Its Applications (대기압 플라즈마와 응용)

  • Uhm Han-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.117-138
    • /
    • 2006
  • Plasmas can be made by electrical discharge on earth. Most of the plasmas on earth have been generated in low pressure environments where the pressure is less than one millionth of the atmospheric pressure. However, there are many plasma applications which require high pressure plasmas. Therefore, scientists start research on plasma generation at high pressure to avoid use of expensive vacuum equipments. Large-volume inexpensive plasmas are needed in the areas of material processing, environmental protection and improvement, efficient energy source and applications, etc. We therefore developed new methods of plasma generations at high pressure and carried out research of applying these plasmas to high tech industries representing 21 century. These research fields will play pivotal roles in material, environmental and energy science and technology in future.

The Analysis of Nitrogen Plasma Using One-dimensional Self-consistent RF Fluid-Model (유체 모델을 이용한 질소 플라즈마의 특성 분석)

  • 임장섭;소순열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.28-35
    • /
    • 2004
  • $N_2$ has been one of the most useful gases in industrial application, for example, plasma ashing, surface cleaning and decomposition of pollution gases. In order to clarify $N_2$ plasma properties and increase practical applications, many experimental and theoretical investigations have been carried out until now on. In this papa, we examined the characteristics of $N_2$ RF Plasmas using one-dimensional fluid model. $N_2$ plasmas showed a double-layer structure in both sheath regions as the power source voltage becomes higher. Generally, a double-layer structure should be showed in electro-negative plasmas, but not in electro-postive plasmas such as $N_2$ discharge. However, most electrons in $N_2$ plasmas lost their energy by many excitation reactions in the near of both electrodes where electron collisions were actively executed and such continuous reactions during an RF period made this structure strong with increase of the power source voltage. The dependence of $N_2$ plasma properties on pressure was also discussed.

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Modeling of the Laser Ablation under the RF Ar Plasmas (RF Ar 플라즈마에서의 레이저 어블레이션 모델링)

  • So, Soon-Youl;Lim, Jang-Seob;Lee, Jin;Jung, Hae-Deok;Park, Gye-Choon;Moon, Chae-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1408-1409
    • /
    • 2007
  • In this paper, we developed a hybrid simulation model of carbon laser ablation under the Ar plasmas consisted of fluid and particle methods. Three kinds of carbon particles, which are carbon atom, ion and electron emitted by laser ablation, are considered in the computation. In the present modeling, we adopt capacitively coupled plasma with ring electrode inserted in the space between the substrate and the target, graphite. This system may take an advantage of ${\mu}m$-sized droplets from the sheath electric field near the substrate. As a result, in Ar plasmas, carbon ion motions were suppressed by a strong electric field and were captured in Ar plasmas. Therefore, a low number density of carbon ions were deposited upon substrate. In addition, the plume motions in Ar gas atmosphere was also discussed.

  • PDF

Synthesis of SiNx:H films in PECVD using RF/UHF hybrid sources

  • Shin, K.S.;Sahu, B.B.;Lee, J.S.;Hori, M.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.1-136.1
    • /
    • 2015
  • In the present study, UHF (320 MHz) in combination with RF (13.56 MHz) plasmas was used for the synthesis of hydrogenated silicon nitride (SiNx:H) films by PECVD process at low temperature. RF/UHF hybrid plasmas were maintained at a fixed pressure of 410 mTorr in the N2/SiH4 and N2/SiH4/NH3 atmospheres. To investigate the radical generation and plasma formation and their control for the growth of the film, plasma diagnostic tools like vacuum ultraviolet absorption spectroscopy (VUVAS), optical emission spectroscopy (OES), and RF compensated Langmuir probe (LP) were utilized. Utilization of RF/UHF hybrid plasmas enables very high plasma densities ~ 1011 cm-3 with low electron temperature. Measurements using VUVAS reveal the UHF source is quite effective in the dissociation of the N2 gas to generate more active atomic N. It results in the enhancement of the Si-N bond concentration in the film. Consequently, the deposition rate has been significantly improved up to 2nm/s for the high rate synthesis of highly transparent (up to 90 %) SiNx:H film. The films properties such as optical transmittance and chemical composition are investigated using different analysis tools.

  • PDF

Study on RF Plasma Modeling Between Unequal-Sized Electrodes Using One-dimensional Fluid Method (비대칭 전극계에서의 1차원적 RF 플라즈마 모델링에 관한 연구)

  • So Soon-Youl;Lim Jang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.35-41
    • /
    • 2004
  • In computational study on RF(Radio Frequency) plasmas, a 1D fluid models with an advantage of a short computational time are often adopted. However, in order to obtain realistic calculation results under a typical chamber geometry with unequal-sized electrodes, modeling of the plasma space is an issue to be investigated. In this paper, it is focused on that how much a 1D model can approximate a 2D model. 1D fluid models with unequal-sized electrodes, which have spherical and frustum geometry systems, were developed and their results were compared with those of 2D model with Gaseous Electronic Conference cell structure. Behavior of $N_2$ RF plasmas has been simulated using 1D and 2D fluid models and a technique to take account of unequal-sized electrodes in a 1D fluid models has been examined. Features of the plasma density and the electric potential were discussed as characteristic quantities representing the asymmetry of the chamber geometry.

Inductively coupled plasma application in CW Laser Propulsion

  • Takayoshi Inoue;Kohei Kojima;Susumu Uehara;Kim, iya-Komurasaki;Yoshihiro Arakawa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.251-256
    • /
    • 2004
  • A concept in which laser-sustained plasmas (LSPs) are combined with inductively coupled plasmas (ICPs) is proposed. The concept is aiming at extensions of operative conditions of a CW laser thruster due to the fact that the ICP has some characteristics which are in contrast to those of LSPs. An estimation confirmed that the concept would effectively work. And a fundamental experiment was conducted. The results showed that the radio frequency magnetic field induced by a alternate current of 13.56 MHz coupled inductively with LSPs, resulting in the enlargement of the plasma region and the attainment of the enthalpy. It is expected that some improvements will enable to transfer the RF power to the work gas more effectively and to demonstrate the synergy effect between the LSPs and the ICPs.

  • PDF

A Study on the Ion Energy Distribution Functions and Plasma Potentials in the Helicon Wave Plasmas (헬리콘 플라즈마에서 이온 에너지 분포 및 플라즈마 전위에 관한 연구)

  • 김정형;서상훈;장홍영
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.201-209
    • /
    • 1995
  • 고밀도 helicon wave 플라즈마의 특성 및 이온 에너지 분포에 관하여 연구하였다. Helicon wave에 의하여 고밀도의 플라즈마를 형성시키는 helicon mode와 capacitive field가 지배적이어서 electrostatic 방전이 되어 저밀도의 플라즈마를 형성시키는 low mode가 존재하는 것을 관찰하였다. rf modulation된 플라즈마 전위가 이온 에너지 분석기를 통하여 얻어지는 이온 에너지 분포에 미치는 영향을 이론 및 실험적으로 관찰하였다. 이온 에너지 분포의 분석을 통하여 low mode에서는 플라즈마 전위가 rf 주파수로 Vp-p의 크기로 modulation되는 것을 확인하였다. Helicon mode에서는 inductive field가 capacitive field보다 우세하기 때문에 플라즈마 전위의 rf modulation은 일어나지 않았다.

  • PDF