• Title/Summary/Keyword: RF plasma

Search Result 1,088, Processing Time 0.024 seconds

Properties of Electron Temperature and Electron Density in Inductively Coupled Xenon Plasma (유도결합형 제논 플라즈마의 전자온도, 전자밀도 특성)

  • Her, In-Sung;Choi, Gi-Seung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2418-2420
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of $20{\sim}100mTorr$ Xenon pressure, $50{\sim}200W$ RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

Synthesis of diamond thin film on WC-Co by RF PACVO (고주파 플라즈마 CVD에 의한 초경합금상에 다이아몬드 박막의 합성)

  • 김대일;이상희;박종관;박구범;조기선;박상현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.452-455
    • /
    • 2000
  • Diamond thin films were synthesized on WC-Co substrate at various experimental parameters using 13.56MHz RF PACVD(radio frequency plasma-assisted chemical vapor deposition). In order to increase the nucleation density, the WC-Co substrate was polished with 3$\mu\textrm{m}$ diamond paste. And the WC-Co substrate was pretreated in HNO$_3$: H$_2$O = 1:1 and O$_2$ plasma. In H$_2$-CH$_4$gas mixture, the crystallinity of thin film increased with decreasing CH$_4$concentration at 800W discharge power and 20torr reaction pressure. In H$_2$-CH$_4$-O$_2$gas mixture, the crystallinity of thin film increased with increasing O$_2$concentration at 800W discharge power, 20torr reaction pressure and 4% CH$_4$concentration.

  • PDF

RF Bias Effect of ITO Thin Films Reactively Sputtered on PET Substrates at Room Temperature

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.122-125
    • /
    • 2004
  • ITO films were deposited on polyethylene terephthalate substrate by a dc reactive magnetron sputtering using rf bias without substrate heater and post-deposition thermal treatment. The dependency of rf substrate bias on plasma sputter processing was investigated to control energetic particles and improve ITO film properties. The substrate was applied negative rf bias voltage from 0 to -80 V. The composition of indium, tin, and oxygen atoms is strongly depended on the rf substrate bias. Oxygen deficiency is the highest at rf bias of -20 V. The electrical and optical properties of ITO films also are dominated obviously by negative rf bias.

RF Loss Minimization Method Using High Impedance Filter for Research (High Impedance Filter를 이용한 RF Loss 최소화 방법에 대한 연구)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • This study designed High impedance filter to reduce RF loss to heater heating wire and increase RF current flowing to heater ground wire. Effects such as D / R improvement and process reproducibility could be seen. In addition, RF parameter distribution optimization was possible by understanding the RF path of PE-CVD equipment using Plasma and designing filter.

Molecular Emission Spectrometric Detection of Low Level Sulfur Using Hollow Cathode Glow Discharge

  • Koo, Il-Gyo;Lee, Woong-Moo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.73-78
    • /
    • 2004
  • A highly sensitive detecting method has been developed for determining part per billion of sulfur in $H_2S$/Ar plasma. The method is based on the excitation of Ar/$H_2S\;or\;Ar/H_2S/O_2$ mixture in hollow cathode glow discharge sustained by radiofrequency (RF) or 60 Hz AC power and the spectroscopic measurement of the intensity of emission lines from electronically excited $S_2^*\;or\;SO_2^*$ species, respectively. The RF or AC power needed for the excitation did not exceed 30 W at a gas pressure maintained at several mbar. The emission intensity from the $SO_2^*$ species showed excellent linear response to the sulfur concentration ranging from 5 ppbv, which correspond to S/N = 5, to 500 ppbv. But the intensity from the $S_2^*$ species showed a linear response to the $H_2S$ only at low flow rate under 20 sccm (mL/min) of the sample gas. Separate experiments using $SO_2$ gas as the source of sulfur demonstrated that the presence of $O_2$ in the argon plasma is essential for obtaining prominent $SO_2^*$ emission lines.

Measurement of Inductively Coupled Plasma Using Langmuir Probe (Langmuir Probe를 이용한 유도결합형 플라즈마의 측정)

  • Lee, Y.H.;Jo, J.U.;Kim, K.S.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1719-1721
    • /
    • 2003
  • In this paper, electrical characteristics of inductively coupled plasma in an electrodeless fluorescent lamp were investigated using a Langmuir probe with a variation of Ar gas pressure. The RF output was applied in the range of 5-50W at 13.56MHz. The internal plasma voltage of the chamber and the probe current were measured while varying the supply voltage to the Langmuir probe in the range of -100V ${\sim}$ +100V. When the pressure of Ar gas was increased, electric current was decreased. There was a significant electric current increase when the applied RF power was increased from 10 W to 30 W. This implies that this method can be used to find an optimal RF power for efficient light illumination in an electrodeless fluorescent lamp.

  • PDF

The Dry Etching of TiN Thin Films Using Inductively Coupled CF4/Ar Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Joo, Young-Hee;Kim, Han-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.67-70
    • /
    • 2013
  • In this study, we changed the input parameters (gas mixing ratio, RF power, DC bias voltage, and process pressure), and then monitored the effect on TiN etch rate and selectivity with $SiO_2$. When the RF power, DC-bias voltage, and process pressure were fixed at 700 W, - 150 V, and 15 mTorr, the etch rate of TiN increased with increasing $CF_4$ content from 0 to 20 % in $CF_4$/Ar plasma. The TiN etch rate reached maximum at 20% $CF_4$ addition. As RF power, DC bias voltage, and process pressure increased, all ranges of etch rates for TiN thin films showed increasing trends. The analysis of x-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of TiN and etch species. Based on experimental data, ion-assisted chemical etching was proposed as the main etch mechanism for TiN thin films in $CF_4$/Ar plasma.

Removal of Humic Acid Using Titania Film with Oxygen Plasma and Rapid Thermal Annealing (산소플라즈마와 급속열처리에 의해 제조된 티타니아 박막의 휴믹산 제거)

  • Jang, Jun-Won;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • Titanium was oxidized with oxygen plasma and calcinated with rapid thermal annealing for degradation of humic acid dissolved in water. Titania photocatalytic plate was produced by titanium surface oxidized with oxygen plasma by Plasma Enhanced Chemical Vapor Deposition (PECVD). RF-power and deposition condition is controlled under 100 W, 150 W, 300 W and 500 W. Treatment time was controlled by 5 min and 10 min. The film properties were evaluated by the X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). From the experimental results, we found the optimal condition of titania film which exhibited good performance. Moreover photocatalytic capacity was about twice better than thermal spray titania film, and also as good as titania powder.

Enhanced Hydrophilic Property of TiO2 Thin Film Deposited on Glass Etched with O2 Plasma

  • Kim, Hwa-Min;Seo, Sung Bo;Kim, Dong Young;Bae, Kang;Sohn, Sun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.152-155
    • /
    • 2013
  • $TiO_2$ films were deposited on glass substrates with and without $O_2$ plasma etching by using the RF-magnetron sputtering method. We focused on the effect of surface structure on the photoinduced hydrophilic properties of $TiO_2$ films, fabricated on different surface conditions according to the presence or absence of the $O_2$ plasma treatment on glass substrates. The wettability and photoinduced hydrophilic properties of the $TiO_2$ films were investigated according to the changes in water contact angles under UV light irradiations with a very low intensity of 0.1 $mW/cm^2$. The photoinduced hydrophilic properties on the $TiO_2$ formed above the plasma treated glass were also superior to those on the $TiO_2$ formed above the bare glass. This enhanced $TiO_2$ film has been used practically for self cleaning and anti-fogging glasses.

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.