DOI QR코드

DOI QR Code

The Dry Etching of TiN Thin Films Using Inductively Coupled CF4/Ar Plasma

  • Woo, Jong-Chang (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute) ;
  • Choi, Chang-Auck (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute) ;
  • Joo, Young-Hee (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Han-Soo (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2012.12.24
  • Accepted : 2013.01.23
  • Published : 2013.04.25

Abstract

In this study, we changed the input parameters (gas mixing ratio, RF power, DC bias voltage, and process pressure), and then monitored the effect on TiN etch rate and selectivity with $SiO_2$. When the RF power, DC-bias voltage, and process pressure were fixed at 700 W, - 150 V, and 15 mTorr, the etch rate of TiN increased with increasing $CF_4$ content from 0 to 20 % in $CF_4$/Ar plasma. The TiN etch rate reached maximum at 20% $CF_4$ addition. As RF power, DC bias voltage, and process pressure increased, all ranges of etch rates for TiN thin films showed increasing trends. The analysis of x-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of TiN and etch species. Based on experimental data, ion-assisted chemical etching was proposed as the main etch mechanism for TiN thin films in $CF_4$/Ar plasma.

Keywords

References

  1. K. C. Park, K.B. Kim, I. J. M. M. Raaijmakers, K. Ngan; J. Appl. Phys. 80 (1996) 5674 [DOI: http://dx.doi.org/10.1063/1.363620].
  2. R. Hegde, R. Flodalice, E. Travis, P. Tobin; J. Vac. Sci. Technol. B 11 (1993) 1287 [DOI: http://dx.doi.org/10.1116/1.586931].
  3. G. Druais, G. Dilliway, P. Fischer, E. Guidotti, O. Lühn, A. Radisic, S. Zahraoui; Microelectron. Eng. 85 (2008) 1957 [DOI: http:// dx.doi.org/10.1016/j.mee.2008.06.004].
  4. L. Tsetseris, S. Logothetidis, S.T. Pantelides; Appl. Phys. Lett. 94 (2009) 161903 [DOI: http://dx.doi.org/10.1063/1.3122344].
  5. M. Kadoshima, T. Matsuki, S. Miyazaki, K. Shiraishi, T. Chikyo, K. Yamada, T. Aoyama, Y. Nara, Y. Ohji; Electr. Dev. Lett. 30 (2009) [DOI: http://dx.doi.org/466.10.1109/LED.2009.2016585].
  6. J. K. Schaeffer, D. C. Gilmer, C. Capasso, S. Kalpat, B. Taylor, M. V. Raymond, D. Triyoso, R. Hegde, S. B. Samavedam, B. E. White; Microelectron. Eng. 84 (2007) 2196 [DOI: http://dx.doi.org/10.1016/j.mee.2007.04.130].
  7. H. K. Chiu, T. L. Lin, Y. Hu, K. C. Leou, H. C. Lin, M. S. Tsai, T. Y. Huang; J. Vac. Sci. Technol. A 19 (2001) 455 [DOI: http://dx.doi. org/10.1116/1.1342866].
  8. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, H. Iwai; J. Vac. Sci. Technol. B 21 (2003) 2163 [DOI: http://dx.doi.org/10.1116/1.1612517].
  9. D. Shamiryan, V. Paraschiv, S. Eslava-Fernedez, M. Demand, M. Baklanov, S. Beckx, W. Boullart; J. Vac. Sci. Technol. B 25 (2007) 739 [DOI: http://dx.doi.org/10.1116/1.2731333].
  10. W. S. Hwang, J. Chen, W.J. Yoo; J. Vac. Sci. Technol. A 23 (2005) 964 [DOI: http://dx.doi.org/10.1116/1.1927536].
  11. K. T. Kim, C.I. Kim; Thin Solid Films 472 (2005) 26 [DOI: http:// dx.doi.org/10.1016/j.tsf.2004.05.128].
  12. A. M. Efremov, S. M. Koo, D. P. Kim, K. T. Kim, C. I. Kim; J. Vac. Sci. Technol. A 22, 2101 (2004) [DOI: http://dx.doi.org/10.1116/1.1772370].
  13. G. H. Kim, C.I. Kim, A.M. Efremov; Vacuum 79 (2005) 231 [DOI: http://dx.doi.org/10.1016/j.vacuum.2005.03.012].
  14. A. M. Efremov, D. P. Kim, C. I. Kim; Vacuum 75 (2004) 133 [DOI: http://dx.doi.org/10.1016/j.vacuum.2004.01.077].
  15. R. d'Agostino, F. Fracassi, C. Pacifico; J. Appl. Phys. 72 (1992) 4351 [DOI: http://dx.doi.org/10.1063/1.352199].
  16. T. Matsuki, T. Watanabe, T. Miura, N. Mise, T. Eimori, Y. Nara, Y. Ohji, A. Uedono, K. Yamada; Jpn. J. Appl. Phys. 46 (2007) L1219 [DOI: http://dx.doi.org/10.1143/JJAP.42.L1219].
  17. G. Prumper, X. J. Liu, K. Ueda, Y. Tamenori; Radiation Physics and Chemistry 75 (2006) 2019 [DOI: http://dx.doi.org/10.1016/j.radphyschem.2005.11.020].

Cited by

  1. High aspect ratio titanium nitride trench structures as plasmonic biosensor vol.7, pp.11, 2017, https://doi.org/10.1364/OME.7.004171