• Title/Summary/Keyword: RF noise

Search Result 623, Processing Time 0.03 seconds

Development of Miniaturized Textile Electrode for Measuring Heart Electric Activity (심장 전기활동 계측을 위한 소형 섬유전극 개발 및 특성 고찰)

  • Lee, Young-Jae;Lee, Jeong-Whan;Yang, Heui-Kyung;Lee, Joo-Hyeon;Kang, Da-Hye;Cho, Hyun-Seung;Ahn, Ihn-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1186-1193
    • /
    • 2009
  • Wearable ECG monitoring is regarded as one of the most essential part in the ubiquitous healthcare environment and subsequently day-life monitoring of a heart condition has been pursued especially for the elder people. However, there are many problems to accomplish this task such as; i) implementation of long-term monitoring device, ii) development of non-irritating electrode on skin and iii) stable signal acquisition. With these aims, we have focused on implementing a non-irritating electrode with an endurable monitoring device for day-life. To accomplish our tasks, we basically developed four different types of textile electrodes that are adapted by both shape and the composed material; flat or convex shape and Ag-conductive paste material or not. It turns out to be that a convex shape and Ag-paste textile electrode has the best performance in terms of both signal-to-noise ratio (SNR) and Impedance/Phase characteristics. Furthermore, ECG amplifier (35 ${\times}$ 35 mm) has developed to resolve the ECG signal and transfer the signal to desktop computing device or portable one by RF serial communication.

Time-domain Estimation Algorithm for Ultrasonic Attenuation using Narrow-filtered Signals (협대역 초음파 신호를 이용한 시간 영역에서의 감쇠 지수 예측)

  • Shim, Jaeyoon;Hur, Don;Kim, Hyungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1887-1893
    • /
    • 2016
  • The VSA(Video Signal Analysis) method is the time-domain approach for estimating ultrasonic attenuation which utilizes the envelop signals from backscattered rf signals. The echogenicity of backscattered ultrasonic signals, however, from deeper depths are distorted when the broadband transmit pulse is used and it degrades the estimation accuracy of attenuation coefficients. We propose the modified VSA method using adaptive bandpass filters according to the centroid shift of echo signals as a pulse propagates. The technique of dual-reference diffraction compensation is also proposed to minimize the estimation errors because the difference of attenuation properties between the reference and sample aggravates the estimation accuracy when the differences are accumulated in deeper depth. The proposed techniques minimize the distortion of relative echogenicity and maximize the signal-to-noise ratio at the given depth. Simulation results for numerical tissue-mimicking phantoms show that the Rectangular-shaped filter with the appropriate center frequency exhibits the best estimation performance and the technique of the dual-reference diffraction compensation dramatically improves accuracy for the region after the beam focus.

Fabrication of a Staircase Coil with Improved SNR and Image Uniformity by Structural Changes of a Conventional Birdcage Coil at 1.5T MRI

  • Ryang, Kyung-Seung;Shin, Yong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.7 no.1
    • /
    • pp.25-36
    • /
    • 2003
  • The performance of radio frequency (RF) coils, used in MRI units, is determined by the image uniformity and the signal-to-noise ratio (SNR). Birdcage and surface coils are commonly used. A birdcage coil provides a good image uniformity while a surface coil produces a high SNR. In this study, therefore, a staircase coil was designed from a standard version of a birdcage coil, with some structural changes to increase SNR while maintaining image uniformity. In phantom experiments, the improvement of the image to uniformity and the SNR increase of the staircase coil compared with the values for the birdcage coil were about 3.5% and 35%, respectively. In clinical experiment, the SNR increase of the staircase coil, compared with the value for the birdcage coil was about 40% in bone, muscle and blood-vessel tissues. These results show that the performance of the staircase coil was very improved over the standard birdcage coil in terms of SNR, and that image uniformity was maintained. Therefore, the staircase coil designed by this study should be useful in experimental and clinical l.5T MRI systems, and this coil offers an alternative method of quadrature detection.

  • PDF

Two Dimensional Boron Doping Properties in SiGe Semiconductor Epitaxial Layers Grown by Reduced Pressure Chemical Vapor Deposition (감압화학증착법으로 성장된 실리콘-게르마늄 반도체 에피층에서 붕소의 이차원 도핑 특성)

  • Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1301-1307
    • /
    • 2004
  • Reduced pressure chemical vapor deposition(RPCYD) technology has been investigated for the growth of SiGe epitaxial films with two dimensional in-situ doped boron impurities. The two dimensional $\delta$-doped impurities can supply high mobility carriers into the channel of SiGe heterostructure MOSFETs(HMOS). Process parameters including substrate temperature, flow rate of dopant gas, and structure of epitaxial layers presented significant influence on the shape of two dimensional dopant distribution. Weak bonds of germanium hydrides could promote high incorporation efficiency of boron atoms on film surface. Meanwhile the negligible diffusion coefficient in SiGe prohibits the dispersion of boron atoms: that is, very sharp, well defined two-dimensional doping could be obtained within a few atomic layers. Peak concentration and full-width-at-half-maximum of boron profiles in SiGe could be achieved in the range of 10$^{18}$ -10$^{20}$ cm$^{-3}$ and below 5 nm, respectively. These experimental results suggest that the present method is particularly suitable for HMOS devices requiring a high-precision channel for superior performance in terms of operation speed and noise levels to the present conventional CMOS technology.

A Design on LNA/Down-Mixer for MB-OFDM m Using 0.18 μm CMOS (CMOS를 이용한 MB-OFDM UWB용 LNA/Down-Mixer 설계)

  • Park Bong-Hyuk;Lee Seung-Sik;Kim Jae-Young;Choi Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.139-143
    • /
    • 2005
  • In this paper, we propose the design on LNA and Down-mixer for MB-OFDM UWB using $0.18\;{\mu}m$ CMOS. LNA, Down-mixer design result shows that it covers the frequency range ken 3 GHz to 5 GHz. The LNA gain is larger than 12.8 dB, and noise figure about 2.6 dB. Double balanced differential down-mixer is designed less than 2 dB gainflatness, and it has over 30 dB LO leakage, feedthrough characteristics.

A D-Band Integrated Signal Source Based on SiGe 0.18μm BiCMOS Technology

  • Jung, Seungyoon;Yun, Jongwon;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • This work describes the development of a D-band (110-170 GHz) signal source based on a SiGe BiCMOS technology. This D-band signal source consists of a V-band (50-75 GHz) oscillator, a V-band amplifier, and a D-band frequency doubler. The V-band signal from the oscillator is amplified for power boost, and then the frequency is doubled for D-band signal generation. The V-band oscillator showed an output power of 2.7 dBm at 67.3 GHz. Including a buffer stage, it had a DC power consumption of 145 mW. The peak gain of the V-band amplifier was 10.9 dB, which was achieved at 64.0 GHz and consumed 110 mW of DC power. The active frequency doubler consumed 60 mW for D-band signal generation. The integrated D-band source exhibited a measured output oscillation frequency of 133.2 GHz with an output power of 3.1 dBm and a phase noise of -107.2 dBc/Hz at 10 MHz offset. The chip size is $900{\times}1,890{\mu}m^2$, including RF and DC pads.

Development of Contaminant Detection System using HTS SQUIDs

  • Ohtani, T.;Tanaka, S.;Narita, Y.;Ariyoshi, S.;Suzuki, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.38-42
    • /
    • 2015
  • In terms of food safety,mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products.

The Spectral Domain K-median Threshold Filtering Method for the Dynamic GPS Interference Excision (동적 GPS 간섭신호 제거에 효율적인 주파수 영역에서의 K-median 필터를 이용한 문턱치 설정 기법)

  • Kim, Jun O;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.243-250
    • /
    • 2017
  • GPS(Global Positioning System) signal structure uses spread spectrum and the received power is relatively lower than the receiver noise figure. Therefore, it is vulnerable to the RF interferences and it could restrict on the safety navigation. The objective of this paper is to research on the spectral domain GPS interference rejection algorithm using proposed K-median filtering threshold setting method. In the performance test, the proposed algorithm has a relatively higher ISR(interference to signal ratio) compared with the conventional temporal domain technique in case of time variant interference signals.

Link Performance of an CDMA-Based Time-of-Flight Ranging by Using LED Visible Light

  • Wang, Yang;Liang, Chengchao;Su, Xin;Chang, KyungHi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.834-840
    • /
    • 2012
  • The use of ranging sensors on automobiles is becoming common with the desire of traffic safety by providing drivers the information of the relative distance between the vehicles. In this paper, the LED visible light ranging system different from the conventional ranging systems using the RF signal is investigated. For such a system, we propose a novel ranging algorithm which combines the time-of-flight (TOF) with the CDMA technology. Via the CDMA technology, the TOF ranging system can accurately distinguish the desired ranging signal from the visible light interferences of the neighbor vehicles. In addition, the proposed system can also overcome the light noise from other luminaries, i.e. sun-light, traffic-light, and so on. The simulation results show that the CDMA-based LED ranging system has a significant improvement for the ranging accuracy compared with the case without employing the CDMA.

Design for the Low If Resistive FET Mixer for the 4-Ch DBF Receiver

  • Ko, Jee-Won;Min, Kyeong-Sik;Arai, Hiroyuki
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.117-123
    • /
    • 2002
  • This paper describes the design for the resistive FET mixer with low If for the 4-Ch DBF(Digital Beam Forming) receiver This DBF receiver based on the direct conversion method is generally suitable for high-speed wireless mobile communications. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(If) considered in this research are 2.09 GHz, 2.08 CHz and 10 MHz, respectively. This mixer is composed of band pass filter, a low pass filter and a DC bias circuit. Super low noise HJ FET of NE3210S01 is considered in design. The RE input power, LO input power and Vcs are used -10 dBm, 6 dBm and -0.4 V, respectively. In the 4-Ch resistive FET mixer, the measured If and harmonic components of 10 MHe, 20 MHz and 2.087 CHz are about -19.2 dBm, -66 dBm and -48 dBm, respectively The If output power observed at each channel of 10 MHz is about -19.2 dBm and it is higher 28.8 dBm than the maximum harmonic component of 2.087 CHz. Each If output spectrum of the 4-Ch is observed almost same value and it shows a good agreement with the prediction.