• Title/Summary/Keyword: RF bias sputtering

Search Result 98, Processing Time 0.032 seconds

Electrical Properties of MIM and MIS Structure using Carbon Nitride Films

  • Lee, Hyo-Ung;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Nano-structured carbon nitride $(CN_x)$ films were prepared by reactive RF magnetron sputtering with a DC bias at various deposition conditions, and the physical and electrical properties were investigated. FTIR spectrum indicated an ${alpha}C_3N_4$ peak in the films. The carbon nitride film deposited on Si substrate had a nano-structured surface morphology. The grain size was about 20 nm and the deposition rate was $1.7{\mu}m/hr$. When the $N_2/Ar$ ratio was 3/7, the level of nitrogen incorporation was 34.3 at%. The film had a low dielectric constant. The metal-insulator-semiconductor (MIS) capacitors that the carbon nitride was deposited as insulators, exhibited a typical C-V characteristics.

ECR-PECVD 방법으로 제작된 DLC 박막의 기판 Bias 전압 효과

  • 손영호;정우철;강종석;정재인;황도원;김인수;배인호
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.188-188
    • /
    • 2000
  • DLC (Diamond-Like Carbon) 박막은 높은 경도와 가시광선 및 적외선 영역에서의 광 투과도, 전기적 절연성, 화학적 안정성 및 저마찰.내마모 특성 등의 우수한 물리.화학적인 물성을 갖고 있기 때문에 여러 분야의 응용연구가 이루어지고 있다. 이러한 DLC 박막을 제작하는 과정에는 여러 가지가 있으나, 본 연구에서는 ECR-PECVD electron cyclotron resonance plasma enhanced chemical vapor deposition) 방법을 사용하였다. 이것은 최근에 많이 이용되고 있는 방법으로, 이온화률이 높을뿐만 아니라 상온에서도 성막이 가능하고 넓은 진공도 영역에서 플라즈마 공정이 가능한 장점이 있다. 기판으로는 4" 크기의 S(100)를 사용하였고, 박막을 제작하기 전에 진공 중에서 플라즈마 전처리를 하였다. 플라즈마 전처리는 Ar 가스를 150SCCM 주입시켜 5$\times$10-1 torr 의 진공도를 유지시키면서, ECR power를 700W로 고정하고, 기판 bias 전압을 -300 V로 하여 5분 동안 기판을 청정하였다. DLC 박막은 ECR power를 700W. 가스혼합비와 유량을 CH4/H2 : 10/100 SCCM, 증착시간을 2시간으로 고정하고, 기판 bias 전압을 0, -50, -75, -100, -150, -200V로 변화시켜가면서 제작하였다. 이때 ECR 소스로부터 기판까지의 거리는 150mm로 하였고, 진공도는 2$\times$10-2torr 였으며, 기판 bias 전압은 기판에 13.56 MHz의 RF power를 연결하여 RF power에 의해서 유도되는 negative DC self bias 전압을 이용하였다. 제작된 박막을 Auger electron spectroscopy, elastic recoil detection, Rutherford backscattering spectroscopy, X-ray diffraction, secondary electron microscopy, atomic force microscoy, $\alpha$-step, Raman scattering spectroscopu, Fourier transform infrared spectroscopy 및 micro hardness tester를 이용하여 기판 bias 전압이 DLC 박막의 특성에 미치는 영향을 조사하였다. 분석결과 본 연구에서 제작된 DLC 박막은 탄소와 수소만으로 구성되어 있으며, 비정질 상태임을 알 수 있었다. 기판 bias 전압의 증가에 따라 박막의 두께가 감소됨을 알 수 있었고, -150V에서는 박막이 거의 만들어지지 않았으며, -200V에서는 기판 표면이 식각되었다. 이것은 기판 bias 전압과 ECR 플라즈마에 의한 이온충돌 효과 때문으로 판단되며, 150V 이하에서는 증착되는 양보다 re-sputtering 되는 양이 더 많을 것으로 생각된다. 기판 bias 전압을 증가시킬수록 플라즈마에 의한 이온충돌 현상이 두드러져 탄소와 결합하고 있던 수소원자들이 떨어져 나가는 탈수소화 (dehydrogenation) 현상을 확인할 수 있었으며, 이것은 C-H 결합에너지가 C-C 결합이나 C=C 결합보다 약하여 수소 원자가 비교적 해리가 잘되므로 이러한 현상이 일어난다고 판단된다. 결합이 끊어진 탄소 원자들은 다른 탄소원자들과 결합하여 3차원적 cross-link를 형성시켜 나가면서 내부 압축응력을 증가시키는 것으로 알려져 있으며, hardness 시험 결과로 이것을 확인할 수 있었다. 그리고 표면거칠기는 기판 bias 전압을 증가시킬수록 더 smooth 해짐을 확인하였다.인하였다.

  • PDF

Crystalline Analysis of Carbon Nitride Films Deposited by Reactive Sputtering System (반응성 스퍼터링 장치로 제작된 질화탄소막의 결정성 분석)

  • Lee, Ji-Gong;Ha, Se-Geun;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.164-167
    • /
    • 2003
  • Carbon nitride films with ${\beta}-C_3N_4$ crystals were grown by rf reactive magnetron sputtering system with negative DC bias. Chamber baking system to supply whole chamber with activation energy was used to reduce the contamination of H and O atoms. XRD peaks showed the existence of crystalline ${\beta}-C_3N_4$(200) and lonsdaleite structures. FTIR spectroscopy studies revealed that the film contain ${\alpha}-C_3N_4$ and ${\beta}-C_3N_4$ with $1011\;cm^{-1},\;1257\;cm^{-1}\;and\;1529\;cm^{-1}$ peaks. We could also find the grain growth of hexagonal structure from SEM photograph, which is coincident with the theoretical carbon nitride unit cell. ${\alpha}$-step was used to make the thickness profile of the grown films.

  • PDF

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.

Current Increase Effect and Prevention for Electron Trapping at Positive Bias Stress System by Dropping the Nematic Liquid Crystal on the Channel Layer of the a-InGaZnO TFT's

  • Lee, Seung-Hyun;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.163-163
    • /
    • 2015
  • The effect of nematic liquid crystal(5CB-4-Cyano-4'-pentylbiphenyl) on the amorphous indium gallium zinc oxide thin film transistors(a-IGZO TFTs) was investigated. Through dropping the 5CB on the a-IGZO TFT's channel layer which is deposited by RF-magnetron sputtering, properties of a-IGZO TFTs was dramatically improved. When drain bias was induced, 5CB molecules were oriented by Freedericksz transition generating positive charges to one side of dipoles. From increment of the capacitance by orientation of liquid crystals, the drain current was increased, and we analyzed these phenomena mathematically by using MOSFET model. Transfer characteristic showed improvement such as decreasing of subthreshold slope(SS) value 0.4 to 0.2 and 0.45 to 0.25 at linear region and saturation region, respectively. Furthermore, in positive bias system(PBS), prevention effect for electron trapping by 5CB liquid crystal dipoles was observed, which showing decrease of threshold voltage shift [(${\delta}V$]_TH) when induced +20V for 1~1000sec at the gate electrode.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Control of ZnO Sputtering Growth by Changing Substrate Bias Voltage (ZnO 스퍼터링에서 기판전압의 변화에 의한 성장 조절)

  • Meng, Jun;Choi, Jaewon;Jeon, Wonjin;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.94-97
    • /
    • 2017
  • Amorphous Si has been used for data processing circuits in flat panel displays. However, low mobility of the amorphous Si is a limiting factor for the data transmission speed. Metal oxides such as ZnO have been studied to replace the amorphous Si. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. When ZnO is grown by sputtering with $O_2$ as an oxidizer, there can be many ion species arising from $O_2$ decomposition. $O^+$, $O_2{^+}$, and $O^-$ ions are expected to be the most abundant species, and it is not clear which one contributes to the ZnO growth. We applied alternating substrate voltage (0 V and -70 V) during sputtering growth. We studied changes in transistor characteristics induced by the voltage switching. We also compared ZnO grown by dc and rf sputtering. ZnO film was grown at $450^{\circ}C$ substrate temperature. ZnO thin-film transistor grown with these methods showed $7.5cm^2/Vsec$ mobility, $10^6$ on-off ratio, and -2 V threshold voltage.

  • PDF

Preparation of $SrTiO_3$ Thin Film by RF Magnetron Sputtering and Its Dielectric Properties (RF 마그네트론 스퍼터링법에 의한 $SrTiO_3$박막제조와 유전특성)

  • Kim, Byeong-Gu;Son, Bong-Gyun;Choe, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.754-762
    • /
    • 1995
  • Strontium titanate(SrTiO$_3$) thin film was prepared on Si substrates by RF magnetron sputtering for a high capacitance density required for the next generation of LSTs. The optimum deposition conditions for SrTiO$_3$thin film were investigated by controlling the deposition parameters. The crystallinity of films and the interface reactions between SrTO$_3$film and Si substrate were characterized by XRD and AES respectively. High quality films were obtained by using the mixed gas of Ar and $O_2$for sputtering. The films were deposited at various bias voltages to obtain the optimum conditions for a high quality file. The best crystallinity was obtained at film thickness of 300nm with the sputtering gas of Ar+20% $O_2$and the bias voltage of 100V. The barrier layer of Pt(100nm)/Ti(50nm) was very effective in avoiding the formation of SiO$_2$layer at the interface between SrTiO$_3$film and Si substrate. The capacitor with Au/SrTiO$_3$/Pt/Ti/SiO$_2$/Si structure was prepared to measure the electric and the dielectric properties. The highest capacitance and the lowest leakage current density were obtained by annealing at $600^{\circ}C$ for 2hrs. The typical specific capacitance was 6.4fF/$\textrm{cm}^2$, the relative dielectric constant was 217, and the leakage current density was about 2.0$\times$10$^{-8}$ A/$\textrm{cm}^2$ at the SrTiO$_3$film with the thickness of 300nm.

  • PDF

Effect of substrate bias voltage on the morphology of ITiO thin film (ITiO 박막의 morphology에 미치는 기판바이어스 전압 효과)

  • Accarat, Chaoumead;Kim, Tae-Woo;Sung, Youl-Moon;Park, Cha-Soo;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1461-1462
    • /
    • 2011
  • In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for dye sensitized solar cell, ITiO thin films were deposited on Corning glass substrate by rf magnetron sputtering method. The effects of the discharge power and gas pressure on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, the effect of heat treatment and bias voltage on the morphological properties of ITiO thin film were also studied and discussed. The concentration ratio (%) for In, Ti, and O was 27 : 2 : 42. The electrical resistivity of $2{\times}10^{-4}{\Omega}{\cdot}cm$ and 90% of optical transmittance were obtained under the conditions of 5mTorr of gas pressure, 300W of discharge power, $300^{\circ}C$ of substrate temperature.

  • PDF

Effect of Electron Beam Irradiation on the Opto-Electrical and Transparent Heater Property of ZnO/Cu/ZnO Thin Films for the Electric Vehicle Application (전자빔 조사에 따른 ZnO/Cu/ZnO 박막의 전기광학적 특성 및 전기자동차용 투명 발열체 특성)

  • Yeon-Hak Lee;Min-Sung Park;Daeil Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.497-501
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film's optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 ℃. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.