• Title/Summary/Keyword: RF Plasma

Search Result 1,089, Processing Time 0.025 seconds

Active control of amplitude and phase of high-power RF systems in EAST ICRF heating experiments

  • Guanghui Zhu;Lunan Liu;Yuzhou Mao;Xinjun Zhang;Yaoyao Guo;Lin Ai;Runhao Jiang;Chengming Qin;Wei Zhang;Hua Yang;Shuai Yuan;Lei Wang;Songqing Ju;Yongsheng Wang;Xuan Sun;Zhida Yang;Jinxin Wang;Yan Cheng;Hang Li;Jingting Luo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.595-602
    • /
    • 2023
  • The EAST ICRF system operating space has been extended in power and phase control with a low-level RF system for the new double-strap antenna. Then the multi-step power and periodic phase scanning experiment were conducted in L-mode plasma, respectively. In the power scanning experiment, the stored energy, radiation power, plasma impedance and the antenna's temperature all have positive responses during the short ramp-ups of PL;ICRF. The core ion temperature increased from 1 keV to 1.5 keV and the core heating area expanded from |Z| ≤ 5 cm to |Z| ≤ 10 cm during the injection of ICRF waves. In the phasing scanning experiment, in addition to the same conclusions as the previous relatively phasing scanning experiment, the superposition effect of the fluctuation of stored energy, radiation power and neutron yield caused by phasing change with dual antenna, resulting in the amplitude and phase shift, was also observed. The active control of RF output facilitates the precise control of plasma profiles and greatly benefits future experimental exploration.

Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma (RF 열플라즈마를 이용한 TEOS로 부터의 SiC 나노분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Kim, Ji-Ho;Byeon, Myeong-Seob;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. RF Thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) has been utilized for synthesis of high purity SiC powder from cheap inorganic solution (Tetraethyl Orthosilicate, TEOS). It is found that the powders by thermal plasma consist of SiC with free carbon and amorphous silica ($SiO_2$) and, by thermal treatment and HF treatment, the impurities are driven off resulting high purity SiC nano-powder. The synthesized SiC powder lies below 30 nm and its properties such microstructure, phase composition, specific surface area and free carbon content have been characterized by X-ay diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) and Brunauer-Emmett-Teller (BET).

A Study on the Characteristics of Ammonia Doped Plasma Polymer Thin Film with a Controlled Plasma Power

  • Seo, Hyeon-Jin;Hwang, Gi-Hwan;Ju, Dong-U;Yu, Jeong-Hun;Lee, Jin-Su;Jeon, So-Hyeon;Nam, Sang-Hun;Yun, Sang-Ho;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.2-242.2
    • /
    • 2014
  • Plasma-polymer thin films (PPTF) have been deposited on a Si(100) wafer and glass under several conditions such as different RF power by using plasma-enhanced chemical vapor deposition (PECVD) system. Ethylcyclohexane, ammonia gas, hydrogen and argon were utilized as organic precursor, doping gas, bubbler gas and carrier gases, respectively. PPTFs were grown up with RF (ratio frequency using 13.56 MHz) powers in the range of 20~60 watt. PPTFs were characterized by FT-IR (Fourier Transform Infrared), FE-SEM (Scanning Electron Microscope), AFM (Atomic Force Microscope), Contact angle and Probe station. The result of FT-IR measurement showed that the PPTFs have high cross-link density nitrogen doping ratio was also changed with a RF power increasing. AFM and FE-SEM also showed that the PPTFs have smooth surface and thickness. Impedance analyzer was utilized for the measurements of C-V curves having different dielectric constant as RF power.

  • PDF

The Transient Response of CF$_4$ RF Plasmas Using One-dimensional Fluid Model (1차원 유체모델을 이용한 CF$_4$ RF 플라즈마의 과도응답 특성)

  • 소순열;임장섭
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • $CF_4$ gas is one of the most useful gases in modern technologies for semiconductor fabrication. However, there are many problems which should be solved in order to fabricate semiconductor device, for example, etching speed drop due to ion charge-up and etching selectivity drop due to the high electron energy. One of useful method in order to suppress their damages above is pulsed-time modulated plasma (PM). However, transient responses of charged particles occur when the source power is turned-on and -off in PM method. To control plasma properties in detail, such a transient phenomenon must be investigated. In this paper, we investigate $CF_4$ RF plasma properties under a one-dimensional fluid model. And also for dynamic and stable control of $CF_4$ plasmas, we investigated the transient behavior of the plasmas after step up or down of the amplitude of the power source voltage $V_s$(t). Fundamental properties of transient $CF_4$ plasmas was discussed. Furthermore, we intend to discuss new method for pulsed-time plasma modulation.

Optical Properties of Organic Light Emitting Diode and Characteristics of ITO by Variation of Radio Frequency Plasma Power (Radio Frequency Plasma Power변화에 따른 ITO 특성 및 OLED의 광학적 특성)

  • Ki, Hyun-Chul;Kim, Hwe-Jong;Hong, Kyung-Jin;Kim, En-Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.81-85
    • /
    • 2009
  • We has been analysed optical properties of OLED(organic light emitting diode) and characteristics of ITO(Indium Tin Oxide) in terms of $O_2$ plasma treatment for manufacturing high efficiency OLED, RF power of $O_2$ plasma was changed 25, 50, 100, 200 W. $O_2$ gas flow, gas pressure and treatment time were fixed. Sheet resistance and surface roughness of ITO were measured by Hall-effect measurement system and AFM, respectively. The ranges of sheet resistance and surface roughness were $5.5{\sim}6,06\;{\Omega}$ and $2.438{\sim}3.506\;nm$ changing of RF power, respectively, PM(Passive Matrix)OLED was fabricated with the structure of ITO(plasm treatment)/TPD($400\;{\AA}$)/$Alq_3(600\;{\AA})$/LiF($5\;{\AA}$)/Al($1200\;{\AA}$). Turn-on voltage of PMOLED was 7 V and luminance was $7,371\;cd/m^2$ at the RF power of 25 W, $O_2$ plasma treatment of ITO surface was result in lowering the operating voltage and improving luminance of PMOLED.

Spheroidization of Pure-vanadium Powder using Radio Frequency Thermal Plasma Process (RF 플라즈마를 이용한 순수 바나늄 분말의 구상화 거동 연구)

  • Adomako, Nana Kwabena;Yang, Seungmin;Lee, Min Gyu;Reddy, N.S.;Kim, Jeoung-Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.305-310
    • /
    • 2019
  • In the present work, spheroidization of angular vanadium powders using a radio frequency (RF) thermal plasma process is investigated. Initially, angular vanadium powders are spheroidized successfully at an average particle size of $100{\mu}m$ using the RF-plasma process. It is difficult to avoid oxide layer formation on the surface of vanadium powder during the RF-plasma process. Titanium/vanadium/stainless steel functionally graded materials are manufactured with vanadium as the interlayer. Vanadium intermediate layers are deposited using both angular and spheroidized vanadium powders. Then, 17-4PH stainless steel is successfully deposited on the vanadium interlayer made from the angular powder. However, on the surface of the vanadium interlayer made from the spheroidized powder, delamination of 17-4PH occurs during deposition. The main cause of this phenomenon is presumed to be the high thickness of the vanadium interlayer and the relatively high level of surface oxidation of the interlayer.

Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering (RF 마그네트론 스퍼터링 공정으로 PET 기판 위에 제조한 Ga-doped ZnO 투명전도막의 특성)

  • Kim, Jeong-Yeon;Kim, Byeong-Guk;Lee, Yong-Koo;Kim, Jae-Hwa;Woo, Duck-Hyun;Kweon, Soon-Yong;Lim, Dong-Gun;Park, Jae-Hwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PET substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 600 sec in $O_2$ plasma pretreatment process, the resistivity of GZO films on the PET substrate was $1.90{\times}10^{-3}{\Omega}-cm$.

Parametric study of inductively coupled plasma etching of GaN epitaxy layer (GaN epitaxy 층의 식각특성에 미치는 공정변수의 영향)

  • Choi, Byoung Su;Park, Hae Li;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.145-149
    • /
    • 2016
  • The effect of process parameters such as plasma composition, ICP (Inductively Coupled Plasma) source power and rf chuck power on the etch characteristics of GaN epitaxy layer was studied. $Cl_2/Ar$ ICP discharges showed higher etch rates than $SF_6/Ar$ discharges because of the higher volatility of $GaCl_x$ etch products than $GaF_x$ compounds. As the Ar ratio increases in the $Cl_2/Ar$ ICP discharges, the etch anisotropy was enhanced due to the improved physical component of the etching. For both plasma chemistries, the GaN etch rate increased continuously as both the ICP source power and rf chuck power increased, and a maximum etch rate of 251.9 nm/min was obtained at $13Cl_2/2Ar$, 750W ICP power, 400W rf chuck power and 10 mTorr condition.

Selective etching of SiO2 using embedded RF pulsing in a dual-frequency capacitively coupled plasma system

  • Yeom, Won-Gyun;Jeon, Min-Hwan;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.2-136.2
    • /
    • 2015
  • 반도체 제조는 chip의 성능 향상 및 단가 하락을 위해 지속적으로 pattern size가 nano size로 감소해 왔고, capacitor 용량은 증가해 왔다. 이러한 현상은 contact hole의 aspect ratio를 지속적으로 증가시킨바, 그에 따라 최적의 HARC (high aspect ratio contact)을 확보하는 적합한 dry etch process가 필수적이다. 그러나 HARC dry etch process는 많은 critical plasma properties 에 의존하는 매우 복잡한 공정이다. 따라서, critical plasma properties를 적절히 조절하여 higher aspect ratio, higher etch selectivity, tighter critical dimension control, lower P2ID과 같은 plasma characteristics을 확보하는 것이 요구된다. 현재 critical plasma properties를 제어하기 위해 다양한 plasma etching 방법이 연구 되어왔다. 이 중 plasma를 낮은 kHz의 frequency에서 on/off 하는 pulsed plasma etching technique은 nanoscale semiconductor material의 etch 특성을 효과적으로 향상 시킬 수 있다. 따라서 본 실험에서는 dual-frequency capacitive coupled plasma (DF-CCP)을 사용하여 plasma operation 동안 duty ratio와 pulse frequency와 같은 pulse parameters를 적용하여 plasma의 특성을 각각 제어함으로써 etch selectivity와 uniformity를 향상 시키고자 하였다. Selective SiO2 contact etching을 위해 top electrode에는 60 MHz pulsed RF source power를, bottom electrode에는 2MHz pulse plasma를 인가하여 synchronously pulsed dual-frequency capacitive coupled plasma (DF-CCP)에서의 plasma 특성과 dual pulsed plasma의 sync. pulsing duty ratio의 영향에 따른 etching 특성 등을 연구 진행하였다. 또한 emissive probe를 통해 전자온도, OES를 통한 radical 분석으로 critical Plasma properties를 분석하였고 SEM을 통한 etch 특성분석과 XPS를 통한 표면분석도 함께 진행하였다. 그 결과 60%의 source duty percentage와 50%의 bias duty percentage에서 가장 향상된 etch 특성을 얻을 수 있었다.

  • PDF

FABRICATION AND MICROSTRUCTURES OF Al-Li ALLOY PARTICLE-FILMS BY RF-PLASMA TECHNIQUE

  • Yoshizawa, Isao;Ono, Tomoko
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.857-861
    • /
    • 1996
  • The influence of rf-plasma operation on the thin film formation containing small particles for Al-Li alloys mainly have been studied as a function of Ar gas pressure and plasma power by means of a 200kV transmission electron microscope (TEM). Under the non-plasma operation, the transition from continuous thin films to clusters of grape-like small particles occurred at Ar gas pressures above 20Pa. Particles were single crystals with clear crystal habit planes. Under the plasma operation, the influence of gas pressures on the film formation at a plasma power of 5W was also examined. Thin films containing particles below 30Pa and the films containing mainly particles above 40Pa were formed. The prominent change of the average particle size was not recognized. The increase of the plasma powers at 20Pa, which formed particles under non-plasma, suppressed growth of particles, and homogeneous films containing very small particles were fabricated. The electric conductivity showed slight decrease with an increase of plasma power.

  • PDF