• Title/Summary/Keyword: RF Compatibility Testing

Search Result 5, Processing Time 0.021 seconds

RF Compatibility Design & Verification for the SAR Satellite (SAR 위성의 고주파 호환성 설계 및 검증)

  • Won, Young-Jin;Park, Hong-Won;Moon, Hong-Youl;Woo, Sung-Hyun;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 2011
  • Synthetic Aperture Radar(SAR) is a powerful and well established microwave remote sensing technique which enables high resolution measurement of Earth surface independent of weather conditions and sunlight illumination. KARI has been developing the first Korea SAR satellite which is scheduled to be launched in this year. The SAR satellite mainly consists of the bus platform and SAR payload. Most of all, the RF compatible design during the design phase and the verification of the RF compatibility during the testing phase is very important procedure for the in-orbit performance guarantee because the SAR payload radiates high power through the SAR antenna. In this study, the SAR satellite design criteria and verification procedure for the RF compatibility are described. In addition, this paper describes the RF full radiation testing (RF auto-compatibility testing) for the verification of the RF performance robustness, the testing configuration, and the test results.

Compact S-Band Antenna Hat for RF Compatibility Testing of Launch Vehicle (발사체의 RF 호환성 시험을 위한 소형 S-밴드 안테나 햇)

  • Kim, Sung-Wan;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.148-157
    • /
    • 2015
  • In this paper, we propose a compact antenna hat to perform RF compatibility testing efficiently between the launch vehicle and ground stations. The proposed structure implements a small size and low loss using the conductive shield instead of the conventional RF absorber. The S-band antenna hat, which is fabricated for an inverted-F onboard antenna with the size of $74mm{\times}13mm{\times}16mm$, has the small enclosure of $88mm{\times}35mm{\times}44mm$, the return loss of 25.6 dB, the insertion loss of 0.26 dB, and the leakage loss of 49.4 dB at the center frequency of 2.25 GHz. The simulated and measured results show a good agreement.

BCI Probe Emulator Using a Microstrip Coupler (마이크로스트립 커플러 구조를 이용한 BCI 프로브 Emulator)

  • Jung, Wonjoo;Kim, SoYoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1164-1171
    • /
    • 2014
  • Bulk Current Injection(BCI) test is a method of injecting current into Integrated Circuit(IC) using a current injection probe to qualify the standards of Electromagnetic Compatibility(EMC). This paper, we propose a microstrip coupler structure that can replace the BCI current injection probe that is used to inject a RF noise in standard IEC 62132-part 3 documented by International Electrotechnical Commission. Conventional high cost BCI probe has mostly been used in testing automotive ICs that use high supply voltage. We propose a compact microstrip coupler which is suitable for immunity testing of low power ICs. We tested its validity to replace the BCI injection probe from 100 MHz to 1,000 MHz. We compared the power[dBm] that is needed to generate the same level of noise between current injection probe and microstrip coupler by sweeping the frequency. Results show that microstrip coupler can inject the same level of noise into ICs for immunity test with less power.

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.

Development of Bluetooth Protocol Stack on Embedded System (임베디드 시스템 상에서 블루투스 프로토콜 스택 개발)

  • Lee, Sang-Hak;Chung, Tae-Choong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.123-128
    • /
    • 2004
  • Recent advancement in RF technology and wireless communications has enabled the development of noble networks. Bluetooth that can be used in various application field is a kind of WPAN(Wireless Personal Area Network) standard that is widely known. Bluetooth enables voice and data applications to operate simultaneously. Various applications have been implemented based on standard Profiles. In this paper, we describes the development of Biuetooth network AP(Access Point) system for network connection of Bluetooth devices. Unlike headset, mouse, and keyboard, the access point should have capability to support multiple connection and stabilized network throughput. We have designed and developed the hardware system, core stack and profiles on embedded system to comply with standard specification. Our system showed compatibility and good protocol performance through testing with lots of products that is available in market.