• Title/Summary/Keyword: RETINOIC ACID

Search Result 302, Processing Time 0.028 seconds

The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1

  • Lee, Sang Hoon;Shin, Ju Hye;Shin, Mi Hwa;Kim, Young Sam;Chung, Kyung Soo;Song, Joo Han;Kim, Song Yee;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Transforming growth factor ${\beta}$ (TGF-${\beta}$), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-${\beta}1$. Methods: A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-${\beta}1$ and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-${\beta}1$ and Smad3 were evaluated at 1 and 3 weeks. Results: When A549 cells were pre-stimulated with TGF-${\beta}1$ prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-${\beta}1$ stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-${\beta}1$ failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-${\beta}1$-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-${\beta}1$ and Smad3 at 1 and 3 weeks. Conclusion: RA had inhibitory effects on the phosphorylation of Smad induced by TGF-${\beta}1$ in vitro, and RA also decreased the expression of TGF-${\beta}1$ at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-${\beta}1$/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-${\beta}1$-induced lung injury and fibrosis.

Subacute Toxicities of All-trans-Retinoic Acid Encapsulated in the Poly(D,L-Lactide) Microspheres

  • Choe, Yong-Du;Park, Gyeong-Sun;Kim, Sang-Yun;Kim, Seon-Hui;Byeon, Yeong-Ro
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.867-870
    • /
    • 2001
  • All-trans-retinoic acid (RA) plays essential roles in the regulation of differentiation and proliferation. It has been proved that RA is effective in the treatments of epithelial and hematologic malignancies. However, in spite of its pronounced effects, the clinical applications of RA are limited due to the retinoid acute resistance. Although RA induces complete remission in a high proportion of the patients of acute promyelocytic leukemia (APL), the cancer was relapsed in many patients after a brief remission in spite of a continued RA treatment. Patients who relapsed from remission that was initially induced by RA had clinically resistant to further RA treatment. That is, specific cytochrome P450 enzymes in the liver were induced by the continuous oral administration of RA, thereby accelerating the metabolism of RA. To overcome this problem, biodegradable microspheres were proposed by us, previously. And, several microsphere formulations for RA delivery have been prepared and studied on their effectiveness. Recently, poly(D,L-lactide) (PDLLA) microsphere formulation was optimized, And, from the animal studies by using a mouse and a rat, it have appeared to be effective on both the inhibition of tumor growth and chemoprevention of a carcinogenesis. In this study, subacute toxicities of the PDLLA microsphere formulation have been investigated as a preclinical test. For the test, the microspheres was injected subcutaneously into the back site of rats, and body weight change, clinical signs, hematological changes, blood biochemistry were evaluated. As a result, severe toxicities such as mortality were observed at the dose of 100mg RA/kg, and toxicities were not observed at the dose of 50mg RA/kg, which is the effective dose against carcinogenesis. Bone fracture, observed at several rats, might be inhibited by treating them with anti-inflammatory drugs.

  • PDF

Expression of $interferon$ $regulatory$ factor-1 in the mouse cumulus-oocyte complex is negatively related with oocyte maturation

  • Kim, Yun-Sun;Kim, Eun-Young;Moon, Ji-Sook;Yoon, Tae-Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.193-202
    • /
    • 2011
  • Objective: We found previously that $interferon$ $regulatory$ factor ($Irf$)-1 is a germinal vesicle (GV)-selective gene that highly expressed in GV as compared to metaphase II oocytes. To our knowledge, the function of $Irf-1$ in oocytes has yet to be examined. The present study was conducted to determine the relationship between retinoic acid (RA) and RA-mediated expression of $Irf-1$ and the mouse oocyte maturation. Methods: Immature cumulus-oocyte-complexes (COCs) were collected from 17-day-old female mice and cultured $in$ $vitro$ for 16 hours in the presence of varying concentrations of RA (0-10 ${\mu}M$). Rate of oocyte maturation and activation was measured. Gene expression was measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and cytokine secretion in the medium was measured by Bio-Plex analysis. Apoptosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results: The rates of oocyte maturation to metaphase II and oocyte activation increased significantly with RA treatment (10 nM-1 ${\mu}M$). With 100 nM RA treatment, lowest level of $Irf-1$ mRNA and cumulus cell's apoptosis was found. Among 23 cytokines measured by Bio-Plex system, the substantial changes in secretion of tumor necrosis factor-${\alpha}$, macrophage inflammatory protein-$1{\beta}$, eotaxin and interleukin-12 (p40) from COCs in response to RA were detected. Conclusion: We concluded that the maturation of oocytes and $Irf-1$ expression are negatively correlated, and RA enhances the developmental competence of mouse immature oocytes $in$ $vitro$ by suppressing apoptosis of cumulus cells. Using a mouse model, results of the present study provide insights into improved culture conditions for $in$ $vitro$ oocyte maturation and relevant cytokine production and secretion in assisted reproductive technology.

Pronephros Induction by Combined-dose of Activin A and IGF-1, and High-dose Effect of IGF-1 in Xenopus Animal Cap Assay (Xenopus 동물극의 분리배양에서 Activin A와 IGF-1의 복합처리에 의한 전신의 분화와 IGF-I 고농도의 효과)

  • 정선우;진정효;윤춘식
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.479-485
    • /
    • 1998
  • The induction of nephric duct from Xenopus presumptive ectoderm(animal cap) was studied and the high-dose ef-fect of IGF-1 was investigated. Activin A induce various organs from cultured animal cap explants and the effects are time and dose-dependent. On the induction of nephric duct, the combined-dose of activin A and retinoic acid was very efficient method in reference study. In present study, we used IGF-1 as well as activin A as a combined growth factor. The concentration ranges of growth factors were activin A l00ng/ml an IGF-1 0-500ng/m1. Explants were cultured in combined solution for 3days to the normal embryo arrives at st. 43. In general, when the explant was cultured in high concentration(l00ng/ml) of activin A, it was destroyed, however, nephric duct and other tis-sues were differentiated by adding IGF-1. In addition, eye induction by adding IGF-1 500ng/ml to activin A 1- 100 ng/ml solution was studied. The low concentration of activin A(1ng/ml) have blood-like cell inducing effect and the explant was balloon-shaped, however, the high dose combination with IGF-1 extended the range of eye inductive concentration of activin A.

  • PDF

Short-term Hypothermic Preservation of CHO Cells Using Serum-Free Media (무혈청 배지를 이용한 CHO 세포의 단기 저온보존)

  • Byoun, Soon-Hwi;Park, Hong-Woo;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.306-311
    • /
    • 2006
  • Cell preservation is indispensable in animal cell culture process and should be established according to the cell characteristics. In this study, we experimented hypothermic preservation of CHO cells that is widely used in pharmaceutical industry to produce therapeutic proteins and established a stable method of preservation. The highest viability of CHO cells was obtained when the cells were preserved using rolling tube, which means the cells should be suspended to avoid the cell lumping during the preservation. Also, we obtained superior preservation result under the anaerobic condition. To evaluate the serum-free media as a preservation solution, we investigated cell growth after hypothermic preservation using serum-free media. High cell viability and normal cell growth was observed during 10 days using serum-free media. Moreover, we found that more effective preservation when ${\alpha}$-tocopherol and retinoic acid is added to media as an additive. In the case of 1 liter large scale hypothermic preservation using established protocol, cell viability and growth rate was obtained as good as small scale one. This study is considered to be helpful for hypothermic preservation of CHO cells and large scale hypothermic preservation may be available through the further studies.

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

The Alleviative Effect of White Tea Water Extract on Inflammation and Skin Barrier Damage (백차 열수추출물의 자외선 조사에 의한 피부염증 및 피부장벽손상 완화 효과)

  • Lee, Kyung-Ok;Kim, Young-Chul;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.41 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • To investigate the alleviative effect of white tea water extract on the inflammation and skin barrier damage, skin aging animal model was produced by the irradiation of UVB to the backs of hairless mice for 12 weeks. And then experimental materials were applied topically for 4 weeks. At the 28th day of experiment, positive control (PC, 0.01% retinoic acid treatment) and experimental groups (E1, 1% white tea water extract treatment; E2, 2% white tea water extract treatment) had significantly (p<0.001) lower values of both skin erythema index and transepidermal water loss (TEWL) than the control (C, saline treatment) group. The appearance of mast cell and the degree of its degranulation in dermal and subcutaneous layers were remarkably reduced in E1 and E2 groups compared to the C group. It is found that white tea water extract is effective in skin barrier damage and inflammation in hairless mouse.

Changes of Facial Wrinkle after Topical Application of On Emulsion Containing Medimin A (Medimin A를 함유한 O/W 에멀전의 주름 개선 효과)

  • 박선규;장민열;김영득;정봉열;원영호;김진준;강세훈
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.23-36
    • /
    • 1999
  • Medimin A is a derivative of vitamin A which has been developed by coupling retinoic acid with polyethylene glycol(PEG) to enhance skin permeability and stability. We carried out the collagen synthesis and clinical test to examine the reducing effect of wrinkles by Medimin A. In vitro collagen synthesis was evaluated by quantitative assay of ($^3$H)-proline incorporation into collagenase sensitive protein in fibroblast cultures. Clinical test was evaluated by image analysis of skin replica, visual observation and self-estimated response of volunteers for 10 weeks. Medimin A stimulated about 40% in collagen synthesis. The area of main deep wrinkle on the skin replica was reduced 38.4% with topical application of O/W emulsion containing 0.2% Medimin A. The wrinkles on the eye region was also reduced 25.4%-44.1% by the visual observation and 93% of all volunteers responded that topical application of the O/W emulsion was showed some reducing effect of wrinkles after 10 weeks. From these results, we suggest that Medimin A is a potent anti-wrinkle agent by objective evaluation methods(in vitro collagen synthesis and image analysis of skin replica) and subjective evaluation methods(visual observation and self-estimated response of volunteers).

  • PDF

Protective Role of Tissue Transglutaminase in the Cell Death Induced by TNF-α in SH-SY5Y Neuroblastoma Cells

  • Kweon, Soo-Mi;Lee, Zee-Won;Yi, Sun-Ju;Kim, Young-Myeong;Han, Jeong-A;Paik, Sang-Gi;Ha, Kwon-Soo
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • Tissue transglutaminase (tTGase) regulates various biological processes, including extracellular matrix organization, cellular differentiation, and apoptosis. Here we report the protective role of tTGase in the cell death that is induced by the tumor necrosis factor $\alpha$ (TNF-$\alpha$) and ceramide, a product of the TNF-$\alpha$ signaling pathway, in human neuroblastoma SH-SY5Y cells. Treatment with retinoic acid (RA) induced the differentiation of the neuroblastoma cells with the formation of extended neurites. Immunostaining and Western blot analysis showed the tTGase expression by RA treatment. TNF-$\alpha$ or $C_2$ ceramide, a cell permeable ceramide analog, induced cell death in normal cells, but cell death was largely inhibited by the RA treatment. The inhibition of tTGase by the tTGase inhibitors, monodansylcadaverine and cystamine, eliminated the protective role of RA-treatment in the cell death that is caused by TNF-$\alpha$ or $C_2$-ceramide. In addition, the co-treatment of TNF-$\alpha$ and cycloheximide ecreased the protein level of tTGase and cell viability in the RA-treated cells, supporting the role of tTGase in the protection of cell death. DNA fragmentation was also induced by the co-treatment of TNF-$\alpha$ and cycloheximide. These results suggest that tTGase expressed by RA treatment plays an important role in the protection of cell death caused by TNF-$\alpha$ and ceramide.

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.