• Title/Summary/Keyword: RECORDED DATA

Search Result 3,262, Processing Time 0.029 seconds

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

Clustering load patterns recorded from advanced metering infrastructure (AMI로부터 측정된 전력사용데이터에 대한 군집 분석)

  • Ann, Hyojung;Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.969-977
    • /
    • 2021
  • We cluster the electricity consumption of households in A-apartment in Seoul, Korea using Hierarchical K-means clustering algorithm. The data is recorded from the advanced metering infrastructure (AMI), and we focus on the electricity consumption during evening weekdays in summer. Compare to the conventional clustering algorithms, Hierarchical K-means clustering algorithm is recently applied to the electricity usage data, and it can identify usage patterns while reducing dimension. We apply Hierarchical K-means algorithm to the AMI data, and compare the results based on the various clustering validity indexes. The results show that the electricity usage patterns are well-identified, and it is expected to be utilized as a major basis for future applications in various fields.

Seismic evaluation of Southern California embankment dam systems using finite element modeling

  • Kamalzare, Mehrad;Marquez, Hector;Zapata, Odalys
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.319-328
    • /
    • 2022
  • Ensuring the integrity of a country's infrastructure is necessary to protect surrounding communities in case of disaster. Embankment dam systems across the US are an essential component of infrastructure, referred to as lifeline structures. Embankment dams are crucial to the survival of life and if these structures were to fail, it is imperative that states be prepared. Southern California is particularly concerned with the stability of embankment dams due to the frequent seismic activity that occurs in the state. The purpose of this study was to create a numerical model of an existing embankment dam simulated under seismic loads using previously recorded data. The embankment dam that was studied in Los Angeles, California was outfitted with accelerometers provided by the California Strong Motion Instrumentation Program that have recorded strong motion data for decades and was processed by the Center for Engineering Strong Motion Data to be used in future engineering applications. The accelerometer data was then used to verify the numerical model that was created using finite element modeling software RS2. The results from this study showed Puddingstone Dam's simulated response was consistent with that experienced during previous earthquakes and therefore validated the predicted behavior from the numerical model. The study also identified areas of weakness and instability on the dam that posed the greatest risk for its failure. Following this study, the numerical model can now be used to predict the dam's response to future earthquakes, develop plans for its remediation, and for emergency response in case of disaster.

OMA of model steel structure retrofitted with CFRP using earthquake simulator

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.689-697
    • /
    • 2017
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Beams of the model steel structure are then retrofitted by using CFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of FRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of CFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 34.43% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Cost and Profit Efficiency of Banks: Stochastic Frontier Analysis vs Data Envelopment Analysis

  • Baten, Md. Azizul;Kasim, Maznah Mat;Rahman, Md. Mafizur
    • Asia-Pacific Journal of Business
    • /
    • v.6 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • This study compares the most widely used parametric and non-parametric techniques to measure cost and profit efficiency of banks, namely the Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA). We formulate the specification form of both stochastic cost and profit frontier models and constant return to scale Cost DEA and Profit DEA models and provide an empirical assessment of the cost and profit frontiers based on a panel dataset of National Commercial Banks (NCBs) and Private Banks (PBs) in Bangladesh over the 2001-2010 period. The cost inefficiency and profit efficiency are slightly higher for PBs than NCBs in case of both SFA and DEA. The coefficients of advance and off-balance sheet items are significant that positively influence the banks in stochastic cost frontier model while the advance, other earning assets, price of borrowed fund are significant and negative effects on the banks in stochastic profit frontier model. The average cost inefficiency and average profit efficiency are recorded with 16.3% and 91% respectively. The highest and lowest cost inefficiency are observed for Janata Bank and United Commercial Bank Limited whilst the highest and lowest profit efficiency are recorded for Eastern Bank Limited and Janata Bank respectively. The average technical and allocative efficiency are 68.8% and 35.9%, respectively in case of CRS cost-DEA model whereas they are 70.3% and 31.8% in case of CRS profit-DEA model. The average cost inefficiency is recorded 6.3% by SFA whereas it is 24.5% by DEA. The average profit efficiency is found 91% by SFA while it is 22.1% by DEA, and SFA method shows better bank efficiency than DEA.

  • PDF

GFRP retrofitting effect on the dynamic characteristics of model steel structure

  • Tuhta, Sertac
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.223-231
    • /
    • 2018
  • Nowadays, there are a great number of various structures that have been retrofitted by using different FRP Composites. Due to this, more researches need to be conducted to know more the characteristics of these structures, not only that but also a comparison among them before and after the retrofitting is needed. In this research, a model steel structure is tested using a bench-scale earthquake simulator on the shake table, using recorded micro tremor data, in order to get the dynamic behaviors. Columns of the model steel structure are then retrofitted by using GFRP composite, and then tested on the Quanser shake table by using the recorded micro tremor data. At this stage, it is needed to evaluate the dynamic behaviors of the retrofitted model steel structure. Various types of methods of OMA, such as EFDD, SSI, etc. are used to take action in the ambient responses. Having a purpose to learn more about the effects of GFRP composite, experimental model analysis of both types (retrofitted and no-retrofitted models) is conducted to evaluate their dynamic behaviors. There is a provision of ambient excitation to the shake table by using recorded micro tremor ambient vibration data on ground level. Furthermore, the Enhanced Frequency Domain Decomposition is used through output-only modal identification. At the end of this study, moderate correlation is obtained between mode shapes, periods and damping ratios. The aim of this research is to show and determine the effects of GFRP Composite implementation on structural responses of the model steel structure, in terms of changing its dynamical behaviors. The frequencies for model steel structure and the retrofitted model steel structure are shown to be 33.916% in average difference. Finally, it is shown that, in order to evaluate the period and rigidity of retrofitted structures, OMA might be used.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

Risk Analysis of Aircraft Operations in Seoul TMA Based on DAA Well Clear Metrics using Recorded ADS-B Data (ADS-B 데이터를 이용한 서울 TMA에서의 DAA Well Clear 기반 위험도 분석)

  • Lee, Hak-Tae;Lee, Hyeonwoong
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.527-532
    • /
    • 2020
  • Seoul terminal maneuvering area (TMA) that includes Incheon International Airport (ICN) and Gimpo International Airport is a very congested airspace with around 1,000 daily flights and the airspace blocked at the boundary between Incheon flight information region (FIR) and Pyongyang FIR. Consequently, with frequency radar vectorings, separation assurance in this airspace is complicated thus resulting in higher controller workload. In this paper, the conflict and collision risks in Seoul TMA are analyzed using recorded ADS-B data for past three years. Using the recorded trajectories, original flight plan procesures and routes are reconstructed and the risks are quantified using detect and avoid well clear (DWC) metric that is developed for large unmanned aircraft system. The region west of ICN was found to be the highest risk area regardless of the runway directions. In addition, merge and crossing points between procedures displayed relatively high risks.

Effects of dietary alfalfa flavonoids on the performance, meat quality and lipid oxidation of growing rabbits

  • Dabbou, Sihem;Gasco, Laura;Rotolo, Luca;Pozzo, Luisa;Tong, Jian Ming;Dong, Xiao Fang;Rubiolo, Patrizia;Schiavone, Achille;Gai, Francesco
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.270-277
    • /
    • 2018
  • Objective: The present experiment has tested the effect of dietary alfalfa flavonoids (AAF) supplementation on the productive performances, carcass characteristics, meat quality and lipid oxidation of growing rabbits. Methods: One hundred and sixty crossbred rabbits (42 days old) were divided into four groups of forty animals each and were fed either a control diet (AAF0) or an AAF0 diet supplemented with 400, 800, or 1,200 mg of AAF/kg per diet (AAF4, AAF8, and AAF12, respectively) from weaning to slaughtering (102 days old). Performance data were recorded over a period of 60 days. At the end of the trial, 12 rabbits were slaughtered per group, and the carcass characteristics were recorded. Moreover, the plasma, liver and dorsal muscles were sampled from 12 rabbits/group, and were analyzed for lipid oxidation. Results: No significant differences were recorded for the performance, carcass characteristics and meat quality traits except for lightness parameter that was lower in the control group. Dietary AAF supplementation significantly (p<0.01) affected the malondialdehyde (MDA) levels of the frozen meat in a dose-related manner, with the lowest value (0.24 mg MDA/kg fresh meat) recorded in the AAF12 group samples. Conclusion: These findings indicated that the dietary inclusion of AAF in rabbit diets improved muscle oxidation stability with no adverse effects on the growth performance of the animals even if a slight impact on meat lightness color parameter was recorded.

Effects of the Recorded Earthquake Data on the Seismic Fragilities of Korean Nuclear Power Plant Structures (한반도 기록지진의 특성이 원자력발전소 구조물의 지진취약도에 미치는 영향 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.321-331
    • /
    • 2003
  • Seismic fragility analysis (SFA) has been utilized to evaluate the actual seismic capacity of structure and equipment in nuclear power plants (NPP). This paper briefly introduces an improved method for evaluating seismic fragilities of components of NPP's in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. Some significant differences between the Newmark's spectra and the recorded spectra as a site-dependent spectra are assessed. Several comparative SFA's have been performed to evaluate the effects of the recorded earthquakes on the seismic capacities of Korean NPP structures. The results showed that SFA using the Newmark's spectra might over estimate the actual seismic capacities of Korean facilities.