• Title/Summary/Keyword: REAL classification

Search Result 1,474, Processing Time 0.032 seconds

Active Sonar Target/Nontarget Classification Using Real Sea-trial Data (실제 해상 실험 데이터를 이용한 능동소나 표적/비표적 식별)

  • Seok, J.W.
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1637-1645
    • /
    • 2017
  • Target/Nontarget classification can be divided into the study of shape estimation of the target analysing reflected echo signal and of type classification of the target using acoustical features. In active sonar system, the feature vectors are extracted from the signal reflected from the target, and an classification algorithm is applied to determine whether the received signal is a target or not. However, received sonar signals can be distorted in the underwater environments, and the spatio-temporal characteristics of active sonar signals change according to the aspect of the target. In addition, it is very difficult to collect real sea-trial data for research. In this paper, target/non-target classification were performed using real sea-trial data. Feature vectors are extracted using MFCC(Mel-Frequency Cepstral Coefficients), filterbank energy in the Fourier spectrum and wavelet domain. For the performance verification, classification experiments were performed using backpropagation neural network classifiers.

Customer Level Classification Model Using Ordinal Multiclass Support Vector Machines

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Asia pacific journal of information systems
    • /
    • v.20 no.2
    • /
    • pp.23-37
    • /
    • 2010
  • Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, however, have only considered nominal classification problems. Thus, these approaches have been limited by the existence of multiclass classification problems where classes are not nominal but ordinal in real world, such as corporate bond rating and multiclass customer classification. In this study, we adopt a novel multiclass SVM which can address ordinal classification problems using ordinal pairwise partitioning (OPP). The proposed model in our study may use fewer classifiers, but it classifies more accurately because it considers the characteristics of the order of the classes. Although it can be applied to all kinds of ordinal multiclass classification problems, most prior studies have applied it to finance area like bond rating. Thus, this study applies it to a real world customer level classification case for implementing customer relationship management. The result shows that the ordinal multiclass SVM model may also be effective for customer level classification.

Type of Classification Criterion and Characteristic of Classification Strategy That Appear in Pre-Service Elementary Teachers' Classification Activity (예비 초등 교사들의 분류 활동에서 나타난 분류 기준의 유형과 분류 전략의 특징)

  • Yang, Il-Ho;Choi, Hyun-Dong
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.9-22
    • /
    • 2008
  • The purpose of this study was to investigate the type of classification criterion and the characteristic of classification strategy that appear in pre-service elementary teachers' classification activity. The 4 tasks were developed for classification activity; button as a real things that attribute is prominent, shell as a real things that attribute is less prominent, snow flake as a picture cards that attribute is prominent, and galaxy as a picture cards that attribute is less prominent. The 5 college students who major in elementary education were selected. Data were collected by interview with participants, participants' classification recording paper, investigator's observation of participants' action observation, and videotaped that record participants' subject classification process. Result proved in this study is as following. First, pre-service elementary teachers used 4 qualitative classification criterion of feature, random field, image and secondary property, and used 2 dimension classification criterion of space and quantity. They used single quality classification criterion or combining dimension classification criterion in classification activity. Second, pre-service elementary teachers have classification strategy that apply each various classification criterion, and also classification strategy are different according to subject, but discussed that "anchor" and "priming effect" are important for effective classification. Result of this study is expected to contribute classification research and classification teaching program development.

  • PDF

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

A Microgenetic Analysis on the Classification Strategy Used in Tasks Related to Science by College Students (대학생이 과학 관련 과제에서 사용한 분류 전략의 미시발생적 분석)

  • Choi, Hyun-Dong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.151-165
    • /
    • 2011
  • Following a microgenetic design, this study was analysed the characteristic and the change of classification strategy that appear in college students' classification activity. The 4 tasks were developed for classification activity; a shell as a familiar real things, an animal fossil as a unfamiliar real things, a snow flake as a familiar picture cards and galaxy as a unfamiliar picture card. Achieved study to 6 college students who major in elementary education. Data were collected by interview with subjects, subject's classification schema, investigator's observation of subject's activity, and videotaped that record subject's subject classification process over an extended period of 6 times. Result proved in this study is as following. In the 6 times of the data collection procedures, a strategy F identifying concrete attribution of classification objects and a more detailed strategy X3 combining qualitative, spatial and dimensional attribution were found and more frequently used in both groups of college students which reported a classification process and did not report the process. While discovery and absorption of both a concrete classification strategy and a detailed classification strategy were rapidly developed in the reporting group, they were gradually developed in the non-reporting group. In addition to this, as the data collection procedures were progressing, the college students were familiar with change factors of classification tasks and in the case of pictures the classification strategy showed more desirable changes.

Classification Accuracy Improvement for Decision Tree (의사결정트리의 분류 정확도 향상)

  • Rezene, Mehari Marta;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.787-790
    • /
    • 2017
  • Data quality is the main issue in the classification problems; generally, the presence of noisy instances in the training dataset will not lead to robust classification performance. Such instances may cause the generated decision tree to suffer from over-fitting and its accuracy may decrease. Decision trees are useful, efficient, and commonly used for solving various real world classification problems in data mining. In this paper, we introduce a preprocessing technique to improve the classification accuracy rates of the C4.5 decision tree algorithm. In the proposed preprocessing method, we applied the naive Bayes classifier to remove the noisy instances from the training dataset. We applied our proposed method to a real e-commerce sales dataset to test the performance of the proposed algorithm against the existing C4.5 decision tree classifier. As the experimental results, the proposed method improved the classification accuracy by 8.5% and 14.32% using training dataset and 10-fold crossvalidation, respectively.

A Real-Time Concept-Based Text Categorization System using the Thesauraus Tool (시소러스 도구를 이용한 실시간 개념 기반 문서 분류 시스템)

  • 강원석;강현규
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.167-167
    • /
    • 1999
  • The majority of text categorization systems use the term-based classification method. However, because of too many terms, this method is not effective to classify the documents in areal-time environment. This paper presents a real-time concept-based text categorization system,which classifies texts using thesaurus. The system consists of a Korean morphological analyzer, athesaurus tool, and a probability-vector similarity measurer. The thesaurus tool acquires the meaningsof input terms and represents the text with not the term-vector but the concept-vector. Because theconcept-vector consists of semantic units with the small size, it makes the system enable to analyzethe text with real-time. As representing the meanings of the text, the vector supports theconcept-based classification. The probability-vector similarity measurer decides the subject of the textby calculating the vector similarity between the input text and each subject. In the experimentalresults, we show that the proposed system can effectively analyze texts with real-time and do aconcept-based classification. Moreover, the experiment informs that we must expand the thesaurustool for the better system.

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

Stream-based Biomedical Classification Algorithms for Analyzing Biosignals

  • Fong, Simon;Hang, Yang;Mohammed, Sabah;Fiaidhi, Jinan
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.717-732
    • /
    • 2011
  • Classification in biomedical applications is an important task that predicts or classifies an outcome based on a given set of input variables such as diagnostic tests or the symptoms of a patient. Traditionally the classification algorithms would have to digest a stationary set of historical data in order to train up a decision-tree model and the learned model could then be used for testing new samples. However, a new breed of classification called stream-based classification can handle continuous data streams, which are ever evolving, unbound, and unstructured, for instance--biosignal live feeds. These emerging algorithms can potentially be used for real-time classification over biosignal data streams like EEG and ECG, etc. This paper presents a pioneer effort that studies the feasibility of classification algorithms for analyzing biosignals in the forms of infinite data streams. First, a performance comparison is made between traditional and stream-based classification. The results show that accuracy declines intermittently for traditional classification due to the requirement of model re-learning as new data arrives. Second, we show by a simulation that biosignal data streams can be processed with a satisfactory level of performance in terms of accuracy, memory requirement, and speed, by using a collection of stream-mining algorithms called Optimized Very Fast Decision Trees. The algorithms can effectively serve as a corner-stone technology for real-time classification in future biomedical applications.

THE CLASSIFICATION OF A CLASS OF HOMOGENEOUS INTEGRAL TABLE ALGEBRAS OF DEGREE FIVE

  • Barghi, A.Rahnamai
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • The purpose of this paper is to give the classification of homogeneous integral table algebras of degree 5 containing a faithful real element of which 2. In fact, these algebras are classified to exact isomorphism, that is the sets of structure constants which arise from the given basis are completely determined. This is work towards classifying homogeneous integral table algebras of degree 5. AMS Mathematics Subject Classification : 20C05, 20C99.