• Title/Summary/Keyword: RCAHEST

Search Result 80, Processing Time 0.021 seconds

Nonlinear Dynamic Analysis of Reinforced Concrete Containment Panel (철근콘크리트 격납 패널의 비선형 동적해석)

  • 박재근;김태훈;신현목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.591-598
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete Containment Panel subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete Containment panel is verified by comparison of analysis results with reliable experimental results.

  • PDF

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

Analytical Study on Hollow Reinforced Concrete Bridge Piers under Varying Axial Load (변동 축하중을 받는 중공 철근콘크리트 교각에 관한 해석적 연구)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.81-84
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load. The role of the variable axial load is very important in the ductility, strength, stiffness, and energy dissipation. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The proposed numerical method for the inelastic behavior of hollow reinforced concrete bridge piers under varying axial load is verified by comparison with reliable experimental results.

  • PDF

Analytical Study on the Flexural Moment Redistribution of Continuous Reinforced Concrete Beams (철근콘크리트 연속보의 휨모멘트 재분배에 관한 해석적 연구)

  • Cheon, Ju-Hyun;Seong, Dae-Jeong;Lee, Sang-Cheol;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.385-388
    • /
    • 2006
  • The purpose of this study is to offer an appropriate method of the degree of the flexural moment redistribution for continuous reinforced concrete beams. Twenty-four two-span continuous beams were selected to determine the manner and degree of moment redistribution. The concept of ductility is linked to the moment redistribution capacity and, consequently, the safety of the structure. Knowledge of the plastic rotation capacity of plastic regions of the structure is important for a plastic analysis or a linear analysis with moment redistribution. A nonlinear finite element analysis program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used to evaluate the ultimate strength and degree of moment redistribution. The nonlinear material model for the reinforced concrete is composed of models for characterizing the behavior of the concrete, in addition to a model for characterizing the reinforcing bars.

  • PDF

Performance assessment of precast concrete pier cap system

  • Kim, T.H.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.501-516
    • /
    • 2014
  • The purpose of this study was to investigate the performance of precast concrete pier cap system. The proposed precast pier cap provides an alternative to current cast-in-place systems, particularly for projects in which a reduced construction time is desired. Five large-scale pier cap specimens were constructed and tested under quasistatic monotonic loading. The computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. A bonded tendon element is used based on the finite element method, and can represent the interaction between the tendon and concrete of a prestressed concrete member. A joint element is used in order to predict the inelastic behaviors of segmental joints with a shear key. This study documents the testing of the precast concrete pier cap system under monotonic loading and presents conclusions and design recommendations based on the experimental and analytical findings. Additional full-scale experimental research is needed to refine and confirm design details, especially for actual detailing employed in the field.

Seismic Analysis of Reinforced Concrete Shear Wall (철근콘크리트 전단벽의 지진해석)

  • 김태훈;박지홍;박재근;최강룡;신현목
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.180-187
    • /
    • 2003
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete shear wall subjected to earthquake motions. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), was used for the analysis of reinforced concrete structures. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hither-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the seismic analysis of reinforced concrete shear wall is verified by comparison of analysis results with reliable experimental results.

  • PDF

Nonlinear Finite Element Analysis of Precast Segmental Prestressed Concrete Bridge Columns (조립식 프리스트레스트 콘크리트 교각의 비선형 유한요소해석)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.292-299
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

Predictions of Seismic Behavior of Reinforced Concrete Bridge Columns

  • Kim Tae-Hoon;Kim Woon-Hak;Lee Kwang-Myong;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.441-450
    • /
    • 2004
  • The objectives of this study are to investigate the seismic behavior of reinforced concrete bridge columns and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The low-cycle fatigue damage of both concrete and reinforcing bars has been also considered in order to predict a reliable seismic behavior. The proposed numerical method for the prediction of seismic behavior of reinforced concrete bridge columns is verified by comparison with the reliable experimental results.