• 제목/요약/키워드: RC slabs

검색결과 189건 처리시간 0.02초

Evaluation of Near Surface Mounted (NSM) FRP technique for strengthening of reinforced concrete slabs

  • Chunwei Zhang;M. Abedini
    • Advances in concrete construction
    • /
    • 제16권4호
    • /
    • pp.205-216
    • /
    • 2023
  • Concrete structures may become vulnerable during their lifetime due to several reasons such as degradation of their material properties; design or construction errors; and environmental damage due to earthquake. These structures should be repaired or strengthened to ensure proper performance for the current service load demands. Several methods have been investigated and applied for the strengthening of reinforced concrete (RC) structures using various materials. Fiber reinforced polymer (FRP) reinforcement is one of the most recent type of material for the strengthening purpose of RC structures. The main objective of the present research is to identify the behavior of reinforced concrete slabs strengthened with FRP bars by using near surface mounted (NSM) technique. Validation study is conducted based on the experimental test available in the literature to investigate the accuracy of finite element models using LS-DYNA to present the behavior of the models. A parametric analysis is conducted on the effect of FRP bar diameters, number of grooves, groove intervals as well as width and height of the grooves on the flexural behavior of strengthened reinforced slabs. Performance of strengthening RC slabs with NSM FRP bars was confirmed by comparing the results of strengthening reinforced slabs with control slab. The numerical results of mid-span deflection and stress time histories were reported. According to the numerical analysis results, the model with three grooves, FRP bar diameter of 10 mm and grooves distances of 100 mm is the most ideal and desirable model in this research. The results demonstrated that strengthening of reinforced concrete slabs using FRP by NSM method will have a significant effect on the performance of the slabs.

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

Fatigue analysis of partly damaged RC slabs repaired with overlaid UHPFRC

  • Deng, Pengru;Kakuma, Ko;Mitamura, Hiroshi;Matsumoto, Takashi
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.19-32
    • /
    • 2020
  • Due to repetitive traffic loadings and environmental attacks, reinforced concrete (RC) bridge deck slabs are suffering from severe degradation, which makes structural repairing an urgency. In this study, the fatigue performance of an RC bridge deck repairing technique using ultra-high performance fiber reinforcement concrete (UHPFRC) overlay is assessed experimentally with a wheel-type loading set-up as well as analytically based on finite element method (FEM) using a crack bridging degradation concept. In both approaches, an original RC slab is firstly preloaded to achieve a partly damaged RC slab which is then repaired with UHPFRC overlay and reloaded. The results indicate that the developed analytical method can predict the experimental fatigue behaviors including displacement evolutions and crack patterns reasonably well. In addition, as the shear stress in the concrete/UHPFRC interface stays relatively low over the calculations, this interface can be simply simulated as perfect. Moreover, superior to the experiments, the numerical method provides fatigue behaviors of not only the repaired but also the unrepaired RC slabs. Due to the high strengths and cracking resistance of UHPFRC, the repaired slab exhibited a decelerated deterioration rate and an extended fatigue life compared with the unrepaired slab. Therefore, the proposed repairing scheme can afford significant strengthen effects and act as a reference for future practices and engineering applications.

Structural Behavior of a RC Bridge Slab Retrofitted with Carbon Fiber Sheet under Large Repeated Load

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • 제14권2호
    • /
    • pp.61-68
    • /
    • 2002
  • An experimental investigation on the flexural fatigue behavior of a RC bridge slab retrofitted with Carbon Fiber Sheet (CFS) is presented. The test slab was almost identical to the slab of a highway viaduct in terms of the amount of reinforcement, quality of concrete and thickness of the slab, which was 18cm. Repeated load corresponding to 3.0, 4.5 or 6.0 times of the design load was applied to the test slab. Normal type and high-elastic modulus type of CFS were used for strengthening. The test slabs were loaded in dry or wet condition. Two different types of an-choring system were adapted. Some of the test slabs were damaged by the repeated load and retrofitted by CFS, then loaded again to see the improvement of the fatigue life. Infrared Thermography was also performed to investigate the debonding condition of CFS. From the test results, Carbon Fiber Sheet can be applied to the RC bridge slabs as a feasible retrofitting material.

  • PDF

활절점으로 연결된 철근콘크리트 슬래브의 전단내력평가 (Evaluation of Shear Strength of Reinforced Concrete Slabs Connected by Hinged Joints)

  • 김상식;최광호;채희대;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.639-642
    • /
    • 2004
  • Lately outmoded and functionally obsolete buildings are often remodelled and restored. When existing reinforced concrete(RC) apartments are remodelled, one of main reasons of the remodelling is to expand dwelling space. The experimental or theoretical research on plane expansion of RC apartments is quite scare. In this research, 9 RC slabs connected by hinged joints were tested. The test results indicated that the shear strength of the RC test slabs having various types of dowel bars was about twice that calculated by the ACI 318-02 code.

  • PDF

압출성형 ECC 패널을 이용한 RC슬래브의 균열제어성능 (Crack Control Performance of the RC Composite Slabs Produced with Extruded ECC Panel)

  • 김윤용;이정한;조창근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.95-96
    • /
    • 2010
  • 이 연구는 압출 성형한 ECC 패널과 철근콘크리트로 구성된 합성 슬래브의 균열제어성능을 평가하고 있다. 이를 위하여 ECC를 압출 성형하여 패널로 제작한 후, 그 패널에 현장타설 콘크리트를 일체 타설하여 실규모의 1방향 슬래브를 제작하였고, 그 실험체에 대하여 휨 실험을 수행하였다.

  • PDF

의사체적제어법을 이용한 철근콘크리트 슬래브의 파괴거동 해석 (Failure Analysis of Reinforced Concrete Slabs using Pseudo-Volume Control Method)

  • 심상효;송하원;최강룡;남상혁;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.577-582
    • /
    • 2000
  • The pseudo-volume control method is developed for the failure analysis of RC slabs, by adding pressure node into layered shell element utilizing in-plane constitutive models of reinforced concrete and layered formulation. For the failure analysis of RC slabs n this paper, geometric nonliearity is also considered in the analysis. The validity of the pseudo-volume control method is verified by comparing analysis results and existing experimental results.

  • PDF

소구경 탄자에 대한 철근콘크리트 슬래브의 관입저항력 평가 (An Assessment for Anti-piercing Designs of RC Slabs against Small Caliber Bullets)

  • 김석봉;강영철;이종찬;백상호;박영준
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.69-75
    • /
    • 2007
  • So far, anti-piercing depths for concrete slabs have been determined using Conventional Weapon's Effects Program(CONWEP) that was developed by the U. S. Army's Corps of Engineering. However, it has been suggested by a number of field officers that the values computed by CONWEP tend to be too high for protective facilities used in small military units and that indiscriminate application of these values to such facilities would lead to uneconomical penetration-proof designs. In this study, gunshots onto RC slabs were carried out using KM80 bullets in order to measure the piercing depths. The observed depths and the depths offered by the CONWEP system differed greatly from each other by up to 119 centimeters. Based on the depth values obtained through this experiment, we have proposed a new equation to calculate effective anti-piercing depths for RC slabs against small caliber bullets.

고강도 콘크리트를 적용한 RC 바닥판의 정적 성능 평가 (Evaluation of Structural Performance of RC Deck Slabs by High-Strength Concrete)

  • 배재현;황훈희;박성용;조근희
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.89-95
    • /
    • 2016
  • Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study conducted structural performance tests of the bridge deck slabs applying high-strength concrete. As result of the tests, specimens of bridge deck slabs were destroyed through punching shear. Moreover, the tests exposed that the high-strength concrete bridge deck slabs satisfy the flexural strength and the punching shear strength at ultimate limit state(ULS). Also, limiting deflection of the concrete fulfilled serviceability limit state(SLS) criteria. These results indicated that the bridge deck slabs designed by high-strength concrete were enough to secure the safety factor despite of its low thickness.

단순 트러스 모델에 의한 철근콘크리트 교량 바닥판의 펀칭전단강도 (Punching Shear Strength of RC Slabs by Simple Truss Model)

  • 이용우;황훈희
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.187-196
    • /
    • 2008
  • 이 연구에서는 단순 트러스 모델을 이용한 철근콘크리트 바닥판의 펀칭전단강도 평가방안을 제안하였다. 철근콘크리트 바닥판의 펀칭전단 해석의 본질적인 어려움을 극복하기 위해 집중하중이 작용하는 바닥판을 펀칭전단 파괴 형태에 기초하여 펀칭콘과 나머지 부분의 소구조체로 구분하였다. 펀칭콘의 강도는 이상화한 트러스의 경사압축부재의 강성도로써 유도되었다. 수평변위를 제어하고 있는 롤러지점의 수평방향 스프링 부재의 강성도는 펀칭콘 내에 포함된 철근에 의하여 결정되었다. 3차원 구조물의 2차원화에 따른 오차와 해석과정에 포함되지 않은 나머지 소구조체의 강성도 등에 기인하는 불확실성들을 포함하기 위하여 경사압축재의 초기각은 실험결과들에 대해 주인장 철근비를 변수로 수행된 회귀분석을 통하여 구하였다. 단순 트러스 모델로부터 구한 펀칭전단강도는 실험결과와의 비교에서 신뢰성이 높은 것으로 나타났다. 단순 트러스 모델의 스냅스로우(snap-through)좌굴해석으로부터 구한 펀칭전단강도는 철근콘크리트 바닥판의 펀칭전단강도의 검토에 유용하게 사용될 수 있을 것이다.