• Title/Summary/Keyword: RC model

Search Result 1,262, Processing Time 0.025 seconds

Investigations of different steel layouts on the seismic behavior of transition steel-concrete composite connections

  • Qi, Liangjie;Xue, Jianyang;Zhai, Lei
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.173-185
    • /
    • 2019
  • This article presents a comparative study of the effect of steel layouts on the seismic behavior of transition steel-concrete composite connections, both experimental and analytical investigations of concrete filled steel tube-reinforced concrete (CFST-RC) and steel reinforecd concrete-reinforced concrete (SRC-RC) structures were conducted. The steel-concrete composite connections were subjected to combined constant axial load and lateral cyclic displacements. Tests were carried out on four full-scale connections extracted from a real project engineering with different levels of axial force. The effect of steel layouts on the mechanical behavior of the transition connections was evaluated by failure modes, hysteretic behavior, backbone curves, displacement ductility, energy dissipation capacity and stiffness degradation. Test results showed that different steel layouts led to significantly different failure modes. For CFST-RC transition specimens, the circular cracks of the concrete at the RC column base was followed by steel yielding at the bottom of the CFST column. While uncoordinated deformation could be observed between SRC and RC columns in SRC-RC transition specimens, the crushing and peeling damage of unconfined concrete at the SRC column base was more serious. The existences of I-shape steel and steel tube avoided the pinching phenomenon on the hysteresis curve, which was different from the hysteresis curve of the general reinforced concrete column. The hysteresis loops were spindle-shaped, indicating excellent seismic performance for these transition composite connections. The average values of equivalent viscous damping coefficients of the four specimens are 0.123, 0.186 and 0.304 corresponding to the yielding point, peak point and ultimate point, respectively. Those values demonstrate that the transition steel-concrete composite connections have great energy dissipating capacity. Based on the experimental research, a high-fidelity ABAQUS model was established to further study the influence of concrete strength, steel grade and longitudinal reinforcement ratio on the mechanical behavior of transition composite connections.

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures (RC Building 구조물의 폭발해석 및 손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.331-340
    • /
    • 2021
  • The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

Application of Lagrangian approach to generate P-I diagrams for RC columns exposed to extreme dynamic loading

  • Zhang, Chunwei;Abedini, Masoud
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.153-167
    • /
    • 2022
  • The interaction between blast load and structures, as well as the interaction among structural members may well affect the structural response and damages. Therefore, it is necessary to analyse more realistic reinforced concrete structures in order to gain an extensive knowledge on the possible structural response under blast load effect. Among all the civilian structures, columns are considered to be the most vulnerable to terrorist threat and hence detailed investigation in the dynamic response of these structures is essential. Therefore, current research examines the effect of blast loads on the reinforced concrete columns via development of Pressure- Impulse (P-I) diagrams. In the finite element analysis, the level of damage on each of the aforementioned RC column will be assessed and the response of the RC columns when subjected to explosive loads will also be identified. Numerical models carried out using LS-DYNA were compared with experimental results. It was shown that the model yields a reliable prediction of damage on all RC columns. Validation study is conducted based on the experimental test to investigate the accuracy of finite element models to represent the behaviour of the models. The blast load application in the current research is determined based on the Lagrangian approach. To develop the designated P-I curves, damage assessment criteria are used based on the residual capacity of column. Intensive investigations are implemented to assess the effect of column dimension, concrete and steel properties and reinforcement ratio on the P-I diagram of RC columns. The produced P-I models can be applied by designers to predict the damage of new columns and to assess existing columns subjected to different blast load conditions.

The Influence of Lap Splice of Longitudinal Bars in the Plstic Hinge Zone on the Nonlinear Behavior Characteristics of RC Piers and New Seismic Detailing Concept in Moderate Seismicity Region (소성힌지 영역의 주철근 겹이음에 의한 RC교각의 비선형 거동특성 및 중약진지역의 내진설계 개선방향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.335-340
    • /
    • 2000
  • The influence of lap splice of longitudinal bars in the plastic hinge zone on the nonlinear behavior characteristics of RC piers has been investigated through the scale model tests. The seismic performance of bridge piers with lap splice is found to be insufficient due to the premature bond failure. On the other hand it is confirmed that the preventing lap splice in the plastic hinge zone enhance the seismic performance considerably even without the seismic details of transverse reinforcements. Bases on these experimental results new seismic detailing concept appropriate to moderate seismicity region has been proposed.

  • PDF

Nonlinear Behavior Characteristics and Seismic Performance of the Existing RC Piers without Seismic Detailing (비내진 상세 기존 RC 교각의 비선형 거동특성 및 내진성능)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.327-334
    • /
    • 2000
  • The seismic performance evaluation of the existing non-seismic detailed RC piers has risen as urgent task for rational and cost-effective seismic retrofitting works as well as development of new seismic design concept. The scale model test has been conducted to investigate nonlinear behavior characteristics and the seismic performance of existing piers with lap-spliced longitudinal reinforcements in the plastic hinge zone which are of the solid circular and the hollow rectangular section. The lap splice in this zone is found to cause premature bond failure. The experimental results show very poor seismic performance of circular section pier but relatively large ductility of the rectangular one.

  • PDF

Shaking Table Tests of the 1/3 Scaled R/C Building with the Laminated Rubber Bearings (적층고무형 면진장치를 갖는 RC건물의 면진효과 검증 진동대 실험)

  • Kim Dong Young;Chun Young Soo;Whang Ki Tea;Chang Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.420-422
    • /
    • 2004
  • This paper reports the results of performance verification tests of the base isolated RC building with the laminated rubber bearings which is manufactured by Dongil Rubber Belt Co.. The shaking table tests were performed using a scaled 3-story model scaled to 1/3 of the prototype RC apartment building. Several major earthquake records were scaled to different peak ground accelerations and used as input base excitations. Through the verification tests, the validity of the applied base isolation device and the response reduction effect against earthquakes are confirmed.

  • PDF

Stress-Strain Curve of Concrete Confined with both Steel Ties and FRP Composites (복합재료에 의하여 구속된 콘크리트의 응력-변형률 곡선 예측)

  • Lee Jung-Yoon;Hwang Hyun-Bok;Oh Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.64-67
    • /
    • 2004
  • In recent years, the use of FRP composites to repair and strengthen existing reinforced concrete (RC) structures has been widely used. When the columns of existing RC structures are wrapped with FRP composites, the core concrete of such columns is confined not only by the FRP composites but also by the existing steel reinforcing ties (or spirals). Therefore, it is necessary to understand correctly the compressive response of concrete confined with both steel spirals and FRP composites in order to predict the behavior of such RC columns. This paper proposes a model to predict the compressive stress-strain curves of concrete confined with FRP and steel reinforcing ties.

  • PDF

Effect of Axial Force on Shear Behavior in Reinforced Concrete Beams (RC 부재의 전단거동에 미치는 축력의 영향에 대한 연구)

  • Jeong Jae Pyong;Kim Dae Joong;Yum Hwan Seok;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.264-267
    • /
    • 2004
  • It is well known that axial tension decreases the shear strength of RC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the concrete contribution is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams.

  • PDF

Feasibility study on corrosion monitoring of a concrete column with central rebar using BOTDR

  • Sun, Yijie;Shi, Bin;Chen, Shen-En;Zhu, Honghu;Zhang, Dan;Lu, Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • Optical fiber Brillouin sensor in a coil winding setup is proposed in this paper to measure the expansion deformation of a concrete column with a central rebar subjected to accelerated corrosion. The optical sensor monitored the whole dynamic corrosion process from initial deformation to final cracking. Experimental results show that Brillouin Optical Time Domain Reflectometer (BOTDR) can accurately measure the strain values and identify the crack locations of the simulated reinforced concrete (RC) column. A theoretical model is used to calculate the RC corrosion expansive pressure and crack length. The results indicate that the measured strain and cracking history revealed the development of the steel bar corrosion inside the simulated RC column.