• Title/Summary/Keyword: RC model

Search Result 1,262, Processing Time 0.024 seconds

Influence of infill panels on an irregular RC building designed according to seismic codes

  • Ercolino, Marianna;Ricci, Paolo;Magliulo, Gennaro;Verderame, Gerardo M.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.261-291
    • /
    • 2016
  • This paper deals with the seismic assessment of a real RC frame building located in Italy, designed according to the current Italian seismic code. The first part of the paper deals with the calibration of the structural model of the investigated building. The results of an in-situ dynamic identification test are employed in a sensitivity and parametric study in order to find the best fit model in terms of frequencies and modal shapes. In the second part, the safety of the structure is evaluated by means of nonlinear static analyses, taking into account the results of the previous dynamic study. In order to investigate the influence of the infills on the seismic response of the structure, the nonlinear static analyses are performed both neglecting and taking into account the infill panels. The infill panels differently change the behavior of the structure in terms of strength and stiffness at different seismic intensity levels. The assessment study also verifies the absence of brittle failures in structural elements, which could be caused by either the local interaction with infills or the failure of the strength hierarchy.

Random generator-controlled backpropagation neural network to predicting plasma process data

  • Kim, Sungmo;Kim, Sebum;Kim, Byungwhan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.599-602
    • /
    • 2003
  • A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.

  • PDF

Comparative study of the seismic response of RC framed buildings retrofitted using modern techniques

  • Mazza, Fabio
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.29-48
    • /
    • 2015
  • The main purpose of this work is to compare different criteria for the seismic strengthening of RC framed buildings in order to find the optimal combinations of these retrofitting techniques. To this end, a numerical investigation is carried out with reference to the town hall of Spilinga (Italy), an RC framed structure with an L-shaped plan built at the beginning of the 1960s. Five structures are considered, derived from the first by incorporating: carbon fibre reinforced polymer (FRP)-wrapping of all columns; base-isolation, with high-damping-laminated-rubber bearings (HDLRBs); added damping, with hysteretic damped braces (HYDBs); FRP-wrapping of the first storey columns combined with base-isolation or added damping. A three-dimensional fibre model of the primary and retrofitted structures is considered; bilinear and trilinear laws idealize, respectively, the behaviour of the HYDB, providing that the buckling be prevented, and the FRP-wrapping, without resistance in compression, while the response of the HDLRB is simulated by using a viscoelastic linear model. The effectiveness of the retrofitting solutions is tested with nonlinear dynamic analyses based on biaxial accelerograms, whose response spectra match those in the Italian seismic code.

Analysis of Facilitied Transport through Fixed Site Carrier Membranes

  • Kang, Yong-Soo;Hong, Jae-Min;Kim, Un-Young
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.57-71
    • /
    • 1995
  • A simple mathematical model for gacilitated mass transport with a fixed site carrier membrane was derived by assuming an instantaneous, microscopic concentration (activity) fluctuation, The concentration fluctuation, developed due to reversible chemical reaction between carrier and solute, could acuse the higher chemical potential gradient and the facilitated transport. For mathematical formulation, an analogy was employed between the mass transfer for the facilitated transport with fixed site carrier membrane and the electron transfer in a parallel resistor-capacitor (RC) circuit. For the single RC model, it was assumed that a single capacitor represented the total carrier and a solute could not inter-diffuse between matrix and carrier, allowing only two diffusional pathways, This assumption was relaxed by adopting a serial combination of the parallel RC circuit. Here, a solute diffuses in two elements (matrix or carrier) can exchange its pathway, exhibiting four diffusional pathways. The current models were examined against experimental data and the agreement was exceptional.

  • PDF

Drop Policy Considering Performance of TCP in Optical Burst Switching Networks (Optical Burst Switching Network에서 TCP 성능을 고려한 Drop Policy)

  • 송주석;김래영;김현숙;김효진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.203-209
    • /
    • 2004
  • In OBS networks, the burst dropping due to contention significantly affects the performance of TCP, but existing drop policies have not considered this problem and researches related to TCP have been mainly studied on burst assembling. We propose the drop policy considering retransmission of TCP to improve the performance of TCP in OBS networks. The proposed drop policy is the Retransmission Count-based DP that regards retransmission count of bursts as priority when it selects dropping burst. This paper evaluates the performance of RC-based DP model and general DP model using ns-2. The metrics of performance evaluation are TCP throughput, maximum sequence number of received TCP packets and drop rate of packet as simulation time increases.

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.

Effects of numerical modeling simplification on seismic design of buildings

  • Raheem, Shehata E Abdel;Omar, Mohamed;Zaher, Ahmed K Abdel;Taha, Ahmed M
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.731-753
    • /
    • 2018
  • The recent seismic events have led to concerns on safety and vulnerability of Reinforced Concrete Moment Resisting Frame "RC-MRF" buildings. The seismic design demands are greatly dependent on the computational tools, the inherent assumptions and approximations introduced in the modeling process. Thus, it is essential to assess the relative importance of implementing different modeling approaches and investigate the computed response sensitivity to the corresponding modeling assumptions. Many parameters and assumptions are to be justified for generation effective and accurate structural models of RC-MRF buildings to simulate the lateral response and evaluate seismic design demands. So, the present study aims to develop reliable finite element model through many refinements in modeling the various structural components. The effect of finite element modeling assumptions, analysis methods and code provisions on seismic response demands for the structural design of RC-MRF buildings are investigated. where, a series of three-dimensional finite element models were created to study various approaches to quantitatively improve the accuracy of FE models of symmetric buildings located in active seismic zones. It is shown from results of the comparative analyses that the use of a calibrated frame model which was made up of line elements featuring rigid offsets manages to provide estimates that match best with estimates obtained from a much more rigorous modeling approach involving the use of shell elements.