• Title/Summary/Keyword: RC model

Search Result 1,280, Processing Time 0.027 seconds

Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings (반복하중을 받는 철근콘크리트 기둥의 비선형 거동)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Inelastic Time History Analysis of a 5-Story Reinforced Concrete IMRF (5층 철근콘크리트 중간모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk Bong;Lim, Byeong Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.13-20
    • /
    • 2012
  • In this study, 5-story structures were designed in accordance with KBC2009 for inelastic time history analysis of RC IMRF. Bending moment-curvature relationship for beam and column was identified with fiber model and bending moment-rotation relationship for beam-column joint was calculated with simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The hysteretic behavior was simulated with three-parameter model suggested in IDARC program. The analytical results showed that the inelastic shear behavior of the joint could be neglected in the structural design for seismic design category C but the structure of category D did not satisfy the criteria of FEMA 356 for collapse prevention performance level.

Modeling of CCP plasma with H2/N2 gas (H2/N2 가스론 이용한 CCP 플라즈마 모델링)

  • Shon, Chae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.158-159
    • /
    • 2006
  • The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multilayer interconnection layers. In order to reduce the RC delay, low-k materials will be used for inter-metal dielectric (IMD) materials. We have developed self-consistent simulation tool that includes neutral-species transport model, based on the relaxation continuum (RCT) model. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatiotemporal steady state profile could be obtained.

  • PDF

Cracking Behavior of RC Panels under Biaxial Tension (이축인장을 받는 철근콘크리트 패널의 균열 거동)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.599-606
    • /
    • 2003
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subjected to uniaxial and biaxial tensile stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, average response of an embedded reinforcement, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete tension members with results from experimental studies. Finally, correlation studies between analytical results and experimental data from biaxial tension test are conducted with the objective to establish the validity of the proposed models and identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

  • PDF

Strength Reliability Analysis of Continuous Steel Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 연속보의 강도신뢰성 해석)

  • 유한신;곽계환;조효남
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.267-273
    • /
    • 2003
  • Steel fiber may be used to raise the effectiveness and safety of reinforced concrete structure and to relax its brittle-fracture behavior. However it is to be clearly stated that the uncertainty for the strength of fiber reinforced concrete(SFRC) is rather increased. Therefore, it is necessary to evaluate the safety of SFRC beam using reliability analysis incorporating realistic uncertainty. This study presents the statistical data and proposes the limit state model to analyze the reliability of SFRC bear In order to verify the efficiency of the proposed limit state model, its numerical application and sensitivity analysis were performed for a continuous SFRC beam. From the results of the numerical analysis, it is founded that the reliability of SFRC beam is significantly difficult from the conventional RC beams and proposed limit state model (or SFRC beam is more rational compared with that for conventional RC beams. Then it may be stated that the reliability analysis of SFRC beams must be carried out for the development of design criteria and the safety assessment.

  • PDF

Analytic Hysteretic Model of Reinforced Concrete Members (철근콘크리트 부재의 해석적 이력모델)

  • 정영수
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.133-142
    • /
    • 1991
  • A mathematical hysteretic model has been developed to analytically reproduce the experimental hysteretic behavior of reinforced concrete members. This mode[2, 3] can simulate the nonlinear response of reinforced concrete members with sufficient accuacy, which are characterized by following important hysteretic behaviors: stiffness degradation, strength deterioration and shear effect. In order to illustrate the capabilities of the proposed mathematical model, numerical examples are presented with the reproduction of experimental hysteretic behavior of RC members and frames.

  • PDF

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

Application of Energy Dissipation Capacity for Nonlinear Analysis (비선형 해석을 위한 에너지 소산 산정법의 활용)

  • 임혜정;박홍근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.172-179
    • /
    • 2003
  • In the performance based seismic design method such as the capacity spectrum method, it is required to estimate precisely strength, deformability and energy dissipation of the member. However it merely depends on empirical equations which are not exact in the estimation of energy dissipation capacity. It is same to the generously used computer programs for nonlinear analysis such as DRAIN-2DX. On the other hand, simple equations for evaluating energy dissipation were developed in a recent study, In this paper, based on the evaluation method, a new cyclic behavior model for a flexure-dominated RC member is proposed. Although this model is simplified, it can accurately reflect the variation of energy dissipation capacity with design parameters. Using this model, a program for the nonlinear static/dynamic analysis of RC moment frame structures is also developed.

  • PDF

Impact of thermal effects in FRP-RC hybrid cantilever beams

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.573-583
    • /
    • 2021
  • This paper presents a theoretical approach of the structures reinforced with bonded FRP composites, taking into account loading model, shear lag effect and the thermal effect. These composites are used, in particular, for rehabilitation of structures by stopping the propagation of the cracks. They improve rigidity and resistance, and prolong their lifespan. In this paper, an original model is presented to predict and to determine the stresses concentration at the FRP end, with the new theory analysis approach. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the concrete beam, the FRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. The numerical resolution was finalized by taking into account the physical and geometric properties of materials that may play an important role in reducing the stress values. This solution is general in nature and may be applicable to all kinds of materials.

Analysis of the effect of aged concrete layer on RC beams, and a strengthening method employing carbon-fiber-reinforced polymer (CFRP) sheets.

  • Liana Satlykova;Young Sook Roh
    • Architectural research
    • /
    • v.26 no.2
    • /
    • pp.31-39
    • /
    • 2024
  • The numerical study focuses on the analysis of the structural behavior of concrete beams containing outdated concrete and offers an innovative method of strengthening them using carbon-fiber-reinforced polymer sheets (CFRP). The focus is on modeling and analyzing the performance of aged concrete beams strengthened by CFRP in the flexural direction. This study presents an ultimate load model for CFRP-strengthened RC beams featuring outdated concrete layers. Validation through four-point bending tests and finite element modeling demonstrated the efficacy of the model. Findings indicate that CFRP sheets significantly enhance beam strength, particularly in structures with outdated concrete layers, resulting in increased ultimate load capacity. Moreover, an inverse relationship between ultimate load and concrete layer height was observed, with the CFS-21-15-30 sample exhibiting the most substantial reduction. Validation of the model was achieved using finite element analysis con-ducted in Abaqus software.