• Title/Summary/Keyword: RC접합부

Search Result 158, Processing Time 0.032 seconds

Hysteretic Behavior of RC Beam-Column Joint for High Strength Structures using Belite Cement (베라이트 시멘트를 이용한 고강도 철근콘크리트 보-기둥 접합부의 이력특성)

  • 배흥한;이상원;윤정배;김기수;이세웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.582-588
    • /
    • 1998
  • The experimental study for the interior beam-column joint for high strength conccrete using Belite cement is presented. Test parameters are compressive strength, flexual strength ratio and joint shear stresslevel. The results from cyclic loading tests show different behaviors from the various parameters. Also, The different behaviors on beam-column joint can be achived by the different concrete strength.

  • PDF

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

Structural Performance of RC Slab-Wall Joints Reinforced by Welded Deformed Steel Bar Mats (철근격자망을 사용한 슬래브-벽체 접합부의 구조성능)

  • Park, Seong-Sik;Yoon, Young-Ho;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • In order to clarify the structural performances of Welded Deformed Steel Bar Mats (WDSBM), the research stated includes the tests for standard hook of top bars of slab in concrete slab-wall joints, the tests for embedment length of top bar of slab, and the development strength tests for standard hook. The test results are as follows; (1) For slab-wall joints using WDSBM as reinforcement in slab, if the top bars of WDSBM are spliced by ordinary bars with sufficient development length and size, it is enough for the strength and crack control. (2) When WDSBM of slab is spliced in joint, the strength is increased with the embedment of bars of this WDSBM into wall. Beyond peak strength, however, ductility is diminished to that as no splice due to pull-out failure. (3) For slab-wall system, ultimate strain of concrete for flexural compression zone in lower surface of slab seems much greater than that of normal concrete beam. The reason is that normal concrete beam has the joint with $180^{\circ}$, however slab-wall joint has the $90^{\circ}$ of which concrete can be confined.

An Experimental Study on the Shear Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 전단강도에 관한 실험적 연구)

  • 이승용;조병완;장동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.182-187
    • /
    • 1993
  • Recent increasing traffic volumes have made many bridges on highway be widened. In widening of existing bridges, construction joints between old and new parts of concrete slabs are subjected to repeated traffic loads during placing and during of concrete. Therefore, the main goal of this paper is given to investigate the variation of the shear strength of widening deck. As a result, the occurrence of cracks in vibrating specimen is faster than that of non-vibrating one, and most of cracks are occurred at new concrete. And the difference of shear strength in vibrating specimen is larger than non-vibrating one, but the difference is negligible. Also, it shows the same result about direct and non-shrinkage joint specimen test.

  • PDF

An Experimental Study on the Adhesive Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 부착강도에 관한 실험적 연구)

  • 전준창;조병완;조효남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.176-181
    • /
    • 1993
  • Recent increasing traffic volumes have made many bridges on highway be widened. Depending on the construction method of bridge widening, several undesirable problems have been arisen with the additional stresses resulting from de-staging of new bridge and the difference of the amount of creep and shrinkage between new and existing bridge. The main focus of this paper is given to investigate the variation of the adhesive strength of steel bar and construction joints of new and old concrete slab. The result shows that repeated vibration loadings was caused some bad effects on the construction joints between new and existing bridges.

  • PDF

Cyclic-loading Tests of 113-Scale R.C. Exterior Beam-column Joints With Non-Seismic Detailing (비내진 상세를 가진 1/3 축소 R.C. 외부 접합부의 반복 횡하중 실험)

  • 이한선;차병기;고동우;임동운
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.179-184
    • /
    • 2001
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with nonseismic detailing. To do this, an exterior beam-column subassemblage was selected from a 10-story RC building and 6 1/3-scale specimens were manufactured with 3 variables; ⑴ with and without slab, ⑵ upward and downward direction of anchorage for the bottom bar in beams, and ⑶ with and without hoop bars in the joint region. The test results have shown that ⑴ the existence of slab increased the strength in positive and negative moment, 25% and 62%, respectively; ⑵ the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation when compared with the case of seismic details; and ⑶ the existence of hoop bars in the joint region does not show significant difference because the size of column is much larger than that of beam.m.

  • PDF

Economic Evaluation of the Centrifugal Formed Shell PC Columns (원심성형 중공 PC기둥의 경제성 평가)

  • Park, Jin-Young;Yang, Won-Jik;Ryu, Hong-Sik;Yi, Waon-Ho;Oh, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.163-164
    • /
    • 2009
  • Recently, RC construction method has needs of many construction expenses and previous by accessory construction progress in construction field. On the other hand, Shell PC column reduces construction expenses and previous. Therefore, the purpose of this study is to the analyze the economical propriety about Centrifugal Formed Shell PC columns application of a field as compared with the RC and PC construction method.

  • PDF

Strut-and-Tie Models for Shear Strength of RC Beam-Column Joints Considering Deformation of Beam Plastic Hinge (보 소성힌지 변형을 고려한 RC보-기둥 접합부의 스트럿-타이 모델)

  • 이수곤;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.397-402
    • /
    • 2003
  • This paper presents strut-and-tie models for predicting shear strength of RC interior beam-column joints considering the plastic hinge rotation of adjacent beams. On seismic design of frame system, it is controlled beams to occur plastic hinges and to be ductile so as to dissipate earthquake energy efficiently. The plastic hinge deformation of beams is used as analysis parameter in terms of strain of beam tensile bars at column face. The shear strengths of beam-column joints are evaluated by combining direct strut mechanism with truss mechanism. It is assumed that the max force transferred by direct strut mechanism is based on the strength of cracked concrete element, and that by truss mechanism is based on bond capacity.

  • PDF

Finite Element Analysis of Connections between RC and Steel Member under Tensile Loading (인장력을 받는 RC 부재와 철골 부재 접합부의 유한요소해석)

  • 김은주;김승훈;서수연;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.75-82
    • /
    • 2001
  • Finite element analysis using ANSYS program conducted to evaluate the tensile behavior of the connection between reinforced concrete and steel members is presented in this paper. It is assumed that there is a complete bond between head part of the stud and concrete. However, the surface of the column area of stud is separated from the concrete to stop the stress transmission between those. In case of using reinforcement connectors such as C or U type, the interface between concrete and reinforcement is idealized to have strong adhesion. Four concrete-steel specimens which are connected by stud connector or reinforcement connectors are compared and analyzed From the comparison, it was shown that the connection between concrete and steel could be predicted by using the modeling technique used in this paper.

  • PDF

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol-Ho;Kim, Jin-Won;Lee, Seung-Dong;Ahn, Jae-Kwon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.168-179
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed that the proposed connections can exhibit punching shear strength and connection stiffness exceeding those of R/C flat plate counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of this study. The application of the proposed modeling procedure to progressive collapse prevention design is also illustrated.

  • PDF