• Title/Summary/Keyword: RC슬래브

Search Result 181, Processing Time 0.024 seconds

Reinforced Performance Evaluation of RC Slab Bridge Using Conclinic Advanced FiberWrep (유리섬유 복합재를 이용한 RC슬래브 교량의 보강성능평가)

  • Park, Soon-Eung;Park, Moon-Ho;Lee, Tack-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.35-40
    • /
    • 2010
  • The present study proposes the strengthening method to use Conclinic Advanced FiberWrep(CAF) so as to improve Load Carrying Capacity of the RC slab bridge. In order to evaluate the strengthening performance, we strengthen 50cm per unit-width of CAF to the slab's bottom of the test bridge that designed with DB 18, then perform Static and Dynamic Field Load Test. As a result of this, 14.7% of the maximum displacement, 5.0% of the strain and 33.7% of the impact factor are reduced after strengthening. At the middle of the test spans, nominal resisting ratio is increased by 27% and Service Load Carrying Capacity is increased by 44.6%, 48.9% of each span 1 and 2. In conclusion, this study indicates that the strengthening method using CAF is very effective to improve the deteriorated RC slab bridge designed with DB 18, to the DB 24 of the first class bridge design load.

Slab Construction Load Distribution in a Multistory-shored RC Structure System with Different Slab Thickness (슬래브 두께가 다른 다층지지 RC 구조 시스템에서의 슬래브 시공 하중 분포)

  • Sang-Min Han;Jae-Yo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.17-26
    • /
    • 2024
  • In recent times, accidents involving structural elements, formwork, and shore have been persistently occurring during concrete pouring, especially in multi-story reinforced concrete (RC) structures. In previous studies, research on construction load analysis was mainly conducted for cases where the thickness of all slabs is constant. However, when the thickness of some slabs is different, the variation in the stiffness of slab cross-sections can lead to different distributions of construction loads, necessitating further investigation. In this study, the slab thickness was set as a variable, and the analysis of the distribution of construction loads was conducted, taking into account the influence of changes in slab thickness on the concrete stiffness and structure. It was confirmed that not only the concrete material stiffness but also the slab cross-section stiffness should be considered in the estimation of construction loads when the slab thickness changes. As the slab thickness increases, the maximum construction load and maximum damage parameter on the layer with increased thickness significantly increase, and it was observed that a thicker slab results in a higher proportion of construction load.

Two-way Shear Strength Evaluation of Transfer Slab-Column Connections Through Nonlinear FE Analysis (비선형유한요소해석을 통한 전이슬래브-기둥 접합부의 2면 전단강도 평가)

  • Jeong, Seong-Hun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.315-329
    • /
    • 2018
  • Recently, RC transfer slab systems have been used widely to construct high-rise wall-type apartments for securing parking space or public space. However, it is problem that the design method and structural performance evaluation method developed for thin RC flat slab are still used in the design of the transfer slab whose thickness is very thick and therefore structural behavior is expected to be different from RC flat slab. Thus, for the rational design of the transfer slab, the ultimate shear behavior of the RC transfer slab system is required to be analyzed properly. Accordingly, in the present study, the two-way shear behavior of the transfer slab was analyzed using nonlinear FEM according to various design parameters such as thickness of the transfer slab, strength of concrete, shear span ratio, and reinforcement ratio. In addition, the two-way shear strength evaluations of RC transfer slab by the existing evaluation methods were verified by comparing those with the results of nonlinear FEM analysis.

Optimal strengthening in RC Hollow Slab Bridges using ${\mu}$-GA (${\mu}$-GA에 의한 RC 중공슬래브교의 최적보강)

  • Choi, Se-Hyu;Park, Kyung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.169-178
    • /
    • 2010
  • In this study, the optimal strengthening by micro genetic algorithm(${\mu}$-GA) method is proposed for improvement of load-carrying capacity of RC hollow slab bridges using external prestressing. The Qeen-post type and King-post type are considered for the optimal strengthening. The type for optimal strengthening, deviator, areas of tendons and the number of anchor are calculated by ${\mu}$-GA. The objective function is constituted with dimensionless cost of tendon and steel for optimal strengthening. The constraints are formulated by design specification for bridges and anchors. The validity of this study is presented by analysis of the results after the optimal strengthening of the RC hollow slab bridge.

Analysis Model of Extruded ECC Panel RC Composite Slabs (압출성형 ECC 패널 RC 복합 슬래브의 해석모델)

  • Cho, Chang-Geun;Kim, Yun-Yong;Seo, Jeong-Hwan;Lee, Seung-Jung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • A model for the nonlinear flexural analysis of extruded Engineered Cementitious Composite (ECC) panel reinforced concrete (RC) composite slab has been newly presented. From direct tensile test, ECC panel has been modeled to have the high-ductile tensile behavior after cracking. The developed model was compared with bending test results of two specimens, a conventional RC slab and a ECC panel RC composite slab. The predicted results were well patched with the experimental results, and the ECC panel RC composite slab system had advantages in crack control and improving flexural load-carrying capacity and deformation-capacity.

Flexural Behavior of Layered RC Slabs, which Bio-Mimics the Interface of Shell Layers, Produced by Using 3D Printable Highly Ductile Cement Composite (3D 프린팅용 고연성 시멘트 복합체를 활용한 패류 껍질층 경계면 모방형 적층 RC 슬래브의 휨 거동)

  • Chang-Jin Hyun;Ki-Seong Kwon;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2024
  • In this study, we employed Highly Ductile Cement Composite (HDCC) to evaluate the flexural performance of a RC slab that simulates the laminating structure of a seashell. To evaluate flexural performance, we produced conventional RC slab specimens, HDCC slab specimens, and HDCC-M slab specimens which biomimics a seashell's layered structure by inserting PE mesh inside the slab made of HDCC. A series of 4-point bending tests were conducted. Experimental results shows the flexural strength of the HDCC-M slab specimen was 1.7 times and 1.2 times higher than that of the RC and HDCC slab specimens, respectively. Furthermore, the ductility was evaluated using the ratio of yield deflection to maximum deflection, and it was confirmed that the HDCC slab test specimen exhibited the best ductility. This is most likely due to the fact that the inserted PE mesh separates the layers and increases ductility, while the HDCC passing through the mesh prevents the loss of load carrying capacity due to layer separation.

Parametric Study on Slab Construction Loads in Multistory-shored RC Structures Including Non-typical Stories with Different Slab Thicknesses (슬래브 두께가 다른 비기준층을 포함한 다층지지 RC 구조에서의 슬래브 시공 하중에 대한 변수 연구)

  • Sang-Min Han;Jae-Yo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.243-250
    • /
    • 2024
  • Recently, accidents involving structural elements, formwork, and shore have occurred continuously during concrete pouring, especially in multistory-shored RC structure systems with non-typical stories with increased slab thicknesses. In previous studies, an analysis was conducted on the stiffness of concrete and distribution of slab construction loads when some slab thicknesses were increased under the same conditions. This study analyzed the construction load, construction damage parameter, and shoring force by varying the construction conditions, such as the construction period and number of shores, as well as the design conditions, such as the thickness increment and number of thickness increment slabs, in a multistory-shored RC structure system with non-typical stories with increased slab thickness.

Study on Stress Variation in Slab and Support of Shearwall-Type RC Apartment during Construction (전단벽식 아파트에서 시공중 슬래브 및 동바리의 응력변화에 대한 연구)

  • Kim Young-Chan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.161-165
    • /
    • 2004
  • Safety and efficiency in the construction of RC structures mainly depends on optimal operation of shore-slat systems. The disasters in RC construction are mainly due to excessive load applied to falsework and premature removal of supports. Development of sufficient compressive strength of early-age connote is essential for the safety of structures during construction. Most of studies on shore-slab interaction have focused on flat slab structures. In this study, load distributions in floor slabs and supports during the construction of shear wall-type RC apartment building structures is investigated using finite element analysis.

Flexural & Fatigue Evaluation of Link Slab for Continuous Girder-Type Precast Modular Bridges (거더형식 프리캐스트 모듈러교량 연속화 지점부에 적용되는 연결슬래브의 휨성능 및 피로성능 평가)

  • Joo, Bong-Chul;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.517-528
    • /
    • 2013
  • The modular technology has been already applied in automotive industry, plant and shipbuilding industry. Recently, the modular technology was applied in bridge construction. The modular bridge is different from the existing precast bridges in terms of standardized design that the detailed design of members is omitted by using the standard modules; the design of the modular bridge is completed by only assembling the standard modules without design in member level. The girder-type precast modular bridge has been developed as a simply supported bridge. The girder-type precast modular bridge could be applied to the multi-span bridges through the continuity method. The continuity of the girder-type precast modular bridge is achieved by using the link slab which is easy to construction and appropriate to the rapid construction. The link slabs have been used as the type of reinforced concrete structure in US from the 1950's. In 2000's, the link slab using the engineered cementitious concrete (ECC link slab) has been developed. In this study, the RC type link slab which is more reproducible and economic relative to the ECC link slab was used for the continuity of the girder-type precast modular bridges, and the construction detail of RC type link slab was modified. In addition, the modified iterative design method of RC type link slab was proposed in this study. To verify the proposed design method, the flexural tests were conducted using the RC type link slab specimens. Also, the fatigue test using the mock-up specimen was conducted with cyclic loading condition up to two million cycles.

An Experimental Study on the Serviceability Evaluation with Vibration Test of RC Slab (진동실험을 통한 슬래브구조물의 사용성 평가)

  • Kim, Dongbaek;Ryu, Gichan
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.312-318
    • /
    • 2014
  • Recent building structures are superior in its ability but they are light weight and long span, and so have problems of vibration. In general, the serviceability of RC slabs was known to be good against vibration because of its hardness. However, recent high-rise apartment slabs are mostly light and long, the serviceability of RC slabs due to vibration could be a problem. In this paper, a basic investigation about vibration problems of RC slabs was performed. Basic information and its influence on vibrations of RC slabs were revealed. Also, its serviceability against vibration was examined. Many tests were conducted for natural frequency of building, for example load of two persons walking and one person leaping etc.