• Title/Summary/Keyword: RC모델

Search Result 471, Processing Time 0.026 seconds

Mathematical modeling of growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds (적콜라비 새싹채소 종자에서 분리한 Escherichia coli strain RC-4-D의 생장예측모델)

  • Choi, Soo Yeon;Ryu, Sang Don;Park, Byeong-Yong;Kim, Se-Ri;Kim, Hyun-Ju;Lee, Seungdon;Kim, Won-Il
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2017
  • This study was conducted to develop a predictive model for the growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds. We collected E. coli kinetic growth data during red kohlrabi seed sprouting under isothermal conditions (10, 15, 20, 25, and $30^{\circ}C$). Baranyi model was used as a primary order model for growth data. The maximum growth rate (${\mu}max$) and lag-phase duration (LPD) for each temperature (except for $10^{\circ}C$ LPD) were determined. Three kinds of secondary models (suboptimal Ratkowsky square-root, Huang model, and Arrhenius-type model) were compared to elucidate the influence of temperature on E. coli growth rate. The model performance measures for three secondary models showed that the suboptimal Huang square-root model was more suitable in the accuracy (1.223) and the suboptimal Ratkowsky square-root model was less in the bias (0.999), respectively. Among three secondary order model used in this study, the suboptimal Ratkowsky square-root model showed best fit for the secondary model for describing the effect of temperature. This model can be utilized to predict E. coli behavior in red kohlrabi sprout production and to conduct microbial risk assessments.

Behavior of Bellow Rectangular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중공구형교각의 거동특성)

  • Kim, Jae-Kwan;Kim, Ick-Hyun;Lim, Hyun-Woo;Lee, Jae-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.263-272
    • /
    • 2003
  • Scaled model tests were carried out to investigate a seismic behavior of reinforced concrete piers with hollow-rectangular section that were not detailed for seismic load. Additional lateral reinforcing bars were not provided that might be required for confinement against earthquake load. Two kinds of reinforcement details were considered for the longitudinal reinforcing bars: lap-spliced and continuous. In the lap-spliced model all longitudinal bars were lapped at the same height in a bottom plastic hinge zone. In the other model all longitudinal bars extended continuously throughout the height. The constructed models were subjected to quasi-static cyclic lateral loading in the presence of the constant vertical load. Limited ductile behavior was observed in the test of lap-spliced model and more ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

Finite Element Analysis for Evaluating the Performance of RC Beams Strengthened with SFRP Coating (분사식 섬유보강 코팅으로 보강된 RC보의 성능평가를 위한 유한요소해석 연구)

  • Ha, Sung-Kug;Yang, Bum-Joo;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • In this paper, a series of finite element analyzes were carried out to evaluate the performance of the RC beams strengthened with sprayed fiber reinforced polymer(SFRP) coating. A damage constitutive model based on the micromechanical constitutive model(Lee, 2001) in conjunction with the damage models(Lee 등, 2000) for SFRP coating was implemented into the finite element code ABAQUS. The present prediction results were compared with experimental data(Ha, 2007; Ha 등, 2009) to assess the accuracy of the damage constitutive model. It was concluded from the comparative study that the computational model developed by implementing the damage constitutive model into ABAQUS is suitable for the prediction of the performance of RC beams strengthened with SFRP coating.

Analytical Studies for Predicting Behaviors of RC Beams Retrofitted with Hybrid FRPs (하이브리드 FRP로 보강된 콘크리트 보의 거동 예측을 위한 해석연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • This study aims at predicting structural behaviors of RC (Reinforced Concrete) beams retrofitted with hybrid FRPs (Fiber Reinforced Polymers). Toward this goal, structural analysis for the RC beams retrofitted with hybrid FRPs are performed and validated using existing experimental data. For the analysis, failure models due to debonding of FRPs and concrete separation are implemented within FE (Finite Element) model, based on Smith and Teng, model, and Teng and Yao model, respectively. Nonlinear material and geometrical effects are also included in the analysis. The suggested modeling approaches are able to predict structural behaviors of RC beams retrofitted with hybrid FRPs similar to the experimental data, however, a numerical model needs to be developed in order to predict failure strength of RC beams retrofitted with hybrid FRPs accurately.

Influencing Factors on Numerical Simulation of Crash between RC Slab and Soft Projectile (RC슬래브와 연성충격체의 충돌시뮬레이션 영향인자 분석)

  • Chung, Chul-Hun;Lee, Jung-Whee;Kim, Sang-Yun;Lee, Jae-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.591-599
    • /
    • 2011
  • This study investigates influencing factors on numerical crash simulation between RC slab and soft projectile using explicit dynamic method. Considered experimental test is the MEPPEN II/4 test, which has been conducted at the end of the years 70' in Germany as one of the numerous experimental test related to design of nuclear power plants. LS-DYNA software is adopted for numerical study, and influencing factors such as constitutive model of concrete, strain rate effect of steel and concrete, support modeling method, etc. are investigated. More reasonable simulation results can be achieved through appropriate consideration of these factors, especially of constitutive model of concrete material since this factor affects most among the investigated factors.

Structural Optimization of a RC Building for Minimizing Weight (중량 최소화를 위한 RC 빌딩의 구조 최적설계)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.501-507
    • /
    • 2010
  • Structural optimization is performed to minimize the weight of a RC building structure, which has eight floors above ground and three underground, under gravity, wind, and seismic loads. Design optimization problem is formulated to find the values of the design variables that minimize the volume while satisfying various design and side constraints. To solved the optimization problem posed, several design techniques equipped in PIAnO, a commercial PIDO tool, are used. DOE is used to generate training points and structural analysis is performed using MIADS Gen, a general-purpose structural analysis CAE tool. Then, meta-models are generated from structural analysis results and accuracies of meta-models are evaluated. Next, design optimization is performed by using the verified meta-models and optimization technique equipped in PIAnO. Finally, we obtained optimal results, which could demonstrate the effectiveness of our design method.

A Parametric Study on Effects of Column Shortening Analytical Correction Using Measured Results in RC Tall Buildings (RC 고층 건물에서 계측 결과를 이용한 기둥축소 해석보정의 효과에 대한 변수 연구)

  • Song, Eun-Seok;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.38-47
    • /
    • 2020
  • A parametric study for analytical correction using measurement results was performed to minimize errors in the predictions of column shortening in RC tall building. The parameters of the column shortening analytical correction are the execution standard of analytical correction, the value of the analytical correction, and the measurement location, and the analytical correction models with the parameters were applied to the construction sequence analysis of a 41-story RC building to compare and analyze the correction effect according to the parameter. The reduction ratio of the error value for each floor was compared with the number of corrections and the total corrected value, and it was confirmed that the error tended to be minimized when the execution standard of analytical correction was performed based on a regular interval, when the analysis correction value was corrected by the error value, and when the measurement position was measured every floor. From this, it was confirmed that the most appropriate analytical correction model can be derived by applying multiple analytical correction models to the actual analysis model.

Automated Seismic Design Method for Reinforced Concrete Structures (철근 콘트리트 구조물의 전산에 의한 내진설계법)

  • 정영수;전준태;김세열
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.111-119
    • /
    • 1991
  • Most of the conventional aseismic design methods for reinforced concrete structures, based on the strong¬column weak-beam design concept, do not necessarily the state of damage distribution over the entire frame. This paper introduces a seismic damage-controlled design method for RC frames which aim at individual member damage indices. Three design parameters, namely the longitudinal steel ratio, the confinement steel ratio and the frame member depth, were studied for their influence on the frame response to an earthquake. The usefulness of this design method will be demonstrated with a three-bay four-story building frame so that, on the one hand, the method will reduce the damage as measured by the global damage index under the same earthquake and, on the other hand, will lead to a larger capacity enabling stronger earthquakes to be accom¬odated .

Evaluation of Axial Strains of Reinforced Concrete Columns (철근콘크리트 기둥의 축방향 변형률 평가)

  • Lee, Jung-Yoon;Kim, Min-Ok;Kim, Hyung-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • The longitudinal axial strain in the plastic hinge region of reinforced concrete (RC) columns influences on the structural behavior of RC structures subjected to reversed cyclic loading. This strain decreases the effective compressive strength of concrete and increases the lateral displacements between stories by causing the elongation of member length. This paper investigated the effects of the axial force on the elongation of a RC member by using a sectional analysis of RC members. The analytical and experimental results indicated that the axial force decreased the axial strain in the plastic hinge region of RC columns. In this study, a model was proposed to predict the axial strain of RC columns. The proposed model considering the effects of axial force ratio consisted of three path types ; Path 1-loading region, Path 2-unloading region, and Path 3-reversing cyclic loading region. The axal strains predicted by the proposed model were compared with the test results of RC columns with various axial force ratios, and agreed reasonably with the observed longitudinal strains.