• Title/Summary/Keyword: RANs

Search Result 541, Processing Time 0.028 seconds

Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel (요철이 설치된 회전하는 채널 내부의 유동 및 열전달의 큰에디모사)

  • Ahn, Joon;Choi, Hae-Cheon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.193-198
    • /
    • 2003
  • A gas turbine blade has an internal cooling passage equipped with ribs, which can be modeled as a ribbed channel. We have studied a flow inside a ribbed channel using large eddy simulaton (LES) with a dynamic subgrid-scale model. The simulation results are compared with the experimental ones. The turbulence intensity and local heat transfer near the rib have not been well captured by the conventional Reynolds averaged Navier-Stokes simulation (RANS). However, these variables obtained by the present LES agree well with those from experiments. From the instantaneous velocity and temperature fields, we explain the mechanisms responsible for the local peaks in the heat transfer distribution along the channel wall. We have also investigated the effect of rotation on the flow and heat transfer in the ribbed channel.

  • PDF

Numerical Analysis of Dam-Break Waves against an Isolated Obstacle (장애물을 고려한 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.169-173
    • /
    • 2011
  • 본 연구에서는 RANS를 지배방정식으로 하는 3차원 수치모의를 통해 댐 붕괴로 인한 3차원적인 흐름 특징이 지배하는 댐 직하류에서 고립된 장애물로 인한 댐 붕괴파의 전파현상과 이동상 수로에서의 붕괴파의 전파현상, 특히 붕괴파의 비정상성과 불연속성, 붕괴파와 반사파의 영향, 상류 및 사류의 흐름의 혼재와 같은 복잡한 현상을 포함하는 붕괴파의 전파를 해석하였다. 장애물로 인한 댐 붕괴파의 전파 해석 결과, 댐의 순간적인 붕괴로 인해 붕괴파가 형성되고 붕괴파가 장애물에 부딪치면 반사파가 발생하며 이는 다시 수로에 부딪치며 반사되는 과정에서 사류와 상류 및 도수현상이 발생하는 복잡한 흐름 양상을 보인다. 이동상 수로에서의 댐붕괴파 해석 결과 붕괴파 전파는 고정상 수로에서의 붕괴파 전파에 비해 그 전파속도가 느리게 형성되었다. 기존 수리실험 결과와 비교 하였을 때 본 모의결과는 국부적인 수면진동의 모의에서 다소 오차가 발생하고 있으나 대체로 그 경향성은 잘 추적하고 있다.

  • PDF

A Comparative Study between Steady and Unsteady Solutions of NACA0012 Airfoil flow (NACA0012 에어포일 주위 유동의 정상해와 비정상해 비교 연구)

  • Chu, Yeon-Bok;Jang, Gyeong-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.121-124
    • /
    • 2012
  • 비정상 유동 해석을 수행하는데 있어서 비정상 Navier-Stokes 방정식을 적용한 결과와 정상 N-S 지배 방정식을 적용한 결과의 차이를 비교하려한다. 적용하고자 하는 비정상 유동은 대칭형 에어포일 NACA0012 에어포일 주위 유동으로 정하였으며, 이 때 에어포일 시위(chord) 길이와 자유류(free stream) 속도 기준으로 Re=100,000에 해당한다. 계산결과 비정상 지배 방정식을 적용한 경우 비정상 유동박리(flow separation)를 모사 할 수 있었으며, 평균 양력계수($C_L$)와 항력계수($C_D$)는 실험치와 비교적 잘 일치하였다. 하지만 정상 N-S 방정식을 적용했을 경우 비정상 유동을 모사하기 어려웠으며 평균양력, 항력계수도 실험치와 차이를 보였다. 이러한 결과는 비정상 유동 해석시 시간에 따라 변화하는 유동의 특성을 고려해 비정상 N-S 지배 방정식을 적용해야한다는 사실을 보이고 있다.

  • PDF

Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method (반응표면법을 이용한 축류 압축기의 동익형상 최적설계)

  • Song, You-Joon;Lee, Jeong-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

Control of Propeller Hub Vortex for Water Treatment Mixer (수처리 교반기의 프로펠러 허브 볼텍스 제어)

  • Kim, Dae-Han;Moon, Young-June
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • In this study, the generation of the propeller hub vortex was analyzed and a PBCF(Propeller Boss Cap Fins) was designed to control the propeller hub vortex. A RANS(Reynolds-averaged Navier-stokes) approach is employed to predict the hub vortex characteristics. The hub profile is an important factor but only a small increase (1.9%) of efficiency was obtained with the hub profile modification. The propeller hub vortex was eliminated by installing the PBCF and as a result, the propeller efficiency was increased by 5.6%.

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

Evaluation of the empirical and structural coal combustion models in the IFRF no.1 Furnace (미분탄 탈휘발 및 촤반응 모델 평가)

  • Joung, Daero;Han, Karam;Huh, Kang Y.;Park, Hoyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.217-219
    • /
    • 2012
  • This study describes 3D RANS simulation of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. The simulation of pulverized coal combustion involves various models for complex physical processes and needs information of pyrolysis rate, the yields and compositions of volatiles and char especially in coal conversion. The coal conversion information can be acquired by the experiment or the pre-processor code. The empirical model based on the experiment of the IFRF and the structural model based on the pre-processor code of the PC-COAL-LAB were evaluated against the measurement data.

  • PDF

Hypersonic Panel Flutter Analysis Using Coupled CFD-CSD Method

  • Tran, Thanh Toan;Kim, Dong-Huyn;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.171-177
    • /
    • 2011
  • In this paper, a square simply supported panel flutter have been considered at high supersonic flow by using coupled fluid-structure (FSI) analysis that based on time domain method. The Reynolds-Average Navier Stokes (RANS) equation with Spalart-Allmaras turbulent model were applied for unsteady flow problems of panel flutter. A fully implicit time marching schemed based on the Newmark direct integration method is used for calculating the coupled aeroelastic governing equations of it. In addition, the SOL 145 solver of MSC.NASTRAN was used to investigate flutter velocity based on PK-method of Piston theory. Our numerical results indicated that there is a good agreement result between Piston Theory in MSC.NASTRAN and coupled fluid-structure analysis.

  • PDF

Acoustical Performance Analysis of Simple Expansion Silencer using Lattice Boltzmann Method (격자 볼츠만법을 이용한 단순 확장형 소음기 음향특성 해석)

  • Lee, Songjune;Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.966-972
    • /
    • 2014
  • The Lattice Boltzmann Method (LBM) has attracted attention as an alternative numerical algorithm for solving fluid mechanics, and its intrinsic unsteadiness and weak numerical damping make it more suitable for aeroacoustic problems. In this paper, applicability of the LBM for solving flow noise problems is tested by applying it to predict transmission loss of a simple expansion silencer. The time history of the static pressure is recorded at the inlet and outlet pipes. The transmission loss (TL) of the muffler is computed by using three point method and two source method, respectively. The TL calculated using the LBM is compared with that computed using finite element method (FEM) and measured data. It is found through these comparisons that the LBM is capable of predicting TL of the simple expansion silencer accurately, which it is difficult to predict using the conventional CFD methods based on the RANS solvers.

  • PDF

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.