• Title/Summary/Keyword: RANSAC

Search Result 152, Processing Time 0.029 seconds

A Real-time Lane Tracking Using Inverse Perspective Mapping (역투영 변환을 이용한 고속도로 환경에서의 실시간 차선 추적)

  • Yeo, Jae-yun;Koo, Kyung-mo;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.103-107
    • /
    • 2013
  • In this paper, A real-time lane tracking algorithm is proposed for lane departure warning system. To eliminate perspective effect, input image is converted into Bird's View by inverse perspective mapping. Next, suitable features are extracted for lane detection. Lane feature that correspond to area of interest and RANSAC are used to detect lane candidates. And driving lane is decided by clustering of lane candidates. Finally, detected lane is tracked using the Kalman filter. Experimental results show that the proposed algorithm can be processed within 30ms and its detection rate is approximately 90% on the highway in a variety of environments such as day and night.

  • PDF

An Implementation of the Real-time Image Stitching Algorithm Based on ROI (ROI 기반 실시간 이미지 정합 알고리즘 구현)

  • Kwak, Jae Chang
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.460-464
    • /
    • 2015
  • This paper proposes a panoramic image stitching that operates in real time at the embedded environment by applying ROI and PROSAC algorithm. The conventional panoramic image stitching applies SURF or SIFT algorithm which contains complicated operations and a lots of data, at the overall image to detect feature points. Also it applies RANSAC algorithm to remove outliers, so that an additional verification time is required due to its randomness. In this paper, unnecessary data are eliminated by setting ROI based on the characteristics of panorama images, and PROSAC algorithm is applied for removing outliers to reduce verification time. The proposed method was implemented on the ORDROID-XU board with ARM Cortex-A15. The result shows an improvement of about 54% in the processing time compared to the conventional method.

Indoor environment recognition based on depth image (깊이 영상 기반 실내 공간 인식)

  • Kim, Su-Kyung;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we propose a method using an image received by the depth camera in order to separate the wall in a three-dimensional space indoor environment. Results of the paper may be used to provide valuable information on the three-dimensional space. For example, they may be used to recognize the indoor space, to detect adjacent objects, or to project a projector on the wall. The proposed method first detects a normal vector at each point by using the three dimensional coordinates of points. The normal vectors are then clustered into several groups according to similarity. The RANSAC algorithm is applied to separate out planes. The domain knowledge helps to determine the wall among planes in an indoor environment. This paper concludes with experimental results that show performance of the proposed method in various experimental environment.

Update of Digital Map by using The Terrestrial LiDAR Data and Modified RANSAC (수정된 RANSAC 알고리즘과 지상라이다 데이터를 이용한 수치지도 건물레이어 갱신)

  • Kim, Sang Min;Jung, Jae Hoon;Lee, Jae Bin;Heo, Joon;Hong, Sung Chul;Cho, Hyoung Sig
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2014
  • Recently, rapid urbanization has necessitated continuous updates in digital map to provide the latest and accurate information for users. However, conventional aerial photogrammetry has some restrictions on periodic updates of small areas due to high cost, and as-built drawing also brings some problems with maintaining quality. Alternatively, this paper proposes a scheme for efficient and accurate update of digital map using point cloud data acquired by Terrestrial Laser Scanner (TLS). Initially, from the whole point cloud data, the building sides are extracted and projected onto a 2D image to trace out the 2D building footprints. In order to register the footprint extractions on the digital map, 2D Affine model is used. For Affine parameter estimation, the centroids of each footprint groups are randomly chosen and matched by means of a modified RANSAC algorithm. Based on proposed algorithm, the experimental results showed that it is possible to renew digital map using building footprint extracted from TLS data.

DB-Based Feature Matching and RANSAC-Based Multiplane Method for Obstacle Detection System in AR

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.49-55
    • /
    • 2022
  • In this paper, we propose an obstacle detection method that can operate robustly even in external environmental factors such as weather. In particular, we propose an obstacle detection system that can accurately inform dangerous situations in AR through DB-based feature matching and RANSAC-based multiplane method. Since the approach to detecting obstacles based on images obtained by RGB cameras relies on images, the feature detection according to lighting is inaccurate, and it becomes difficult to detect obstacles because they are affected by lighting, natural light, or weather. In addition, it causes a large error in detecting obstacles on a number of planes generated due to complex terrain. To alleviate this problem, this paper efficiently and accurately detects obstacles regardless of lighting through DB-based feature matching. In addition, a criterion for classifying feature points is newly calculated by normalizing multiple planes to a single plane through RANSAC. As a result, the proposed method can efficiently detect obstacles regardless of lighting, natural light, and weather, and it is expected that it can be used to secure user safety because it can reliably detect surfaces in high and low or other terrains. In the proposed method, most of the experimental results on mobile devices reliably recognized indoor/outdoor obstacles.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

Robust Lane Detection Algorithm in Shadow Area by using Local Feature Point (그림자 영역에서 강인한 지역 특징점 기반의 차선인식 기법)

  • Kim, Tae-Dong;Yi, Kang;Jung, Kyeong-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.194-197
    • /
    • 2016
  • 자동차 산업이 발전하면서 안정적인 주행과 운전자의 편의성을 위한 지능형운전자보조시스템인 ADAS (Advanced Driver Assistance System)가 이슈가 되고 있다. 차선인식의 결과에 따라 차선이탈 경고시스템의 성능이 달라지기 때문에 차선인식은 ADAS에서 매우 중요한 핵심적인 기술이라 할 수 있다. 이에 본 논문에서는 그림자 영역과 같이 밝기의 분포가 균일하지 않는 환경에서 강인하게 동작하는 차선인식 알고리즘을 제안하였다, 지역적인 밝기 특징을 고려하여 차선에 해당하는 특징점을 추출하며, 추출된 특징점 가운데 이상치(outlier)를 제거하기 위해 RANSAC (RANdom SAmple Consensus) 알고리즘을 이용하여 차선을 검출한다. 또한 RANSAC 알고리즘에서 신뢰도가 높은 차선이 검출되면 그 주위에 특징점을 추출하기 위한 관심영역을 설정함으로써 안정적인 차선 검출이 가능하도록 하였다.

  • PDF

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

A NEW LANDSAT IMAGE CO-REGISTRATION AND OUTLIER REMOVAL TECHNIQUES

  • Kim, Jong-Hong;Heo, Joon;Sohn, Hong-Gyoo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.594-597
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.

  • PDF