• Title/Summary/Keyword: RANS modeling

Search Result 43, Processing Time 0.023 seconds

Computational evaluation of wind loads on buildings: a review

  • Dagnew, Agerneh K.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.629-660
    • /
    • 2013
  • This paper reviews the current state-of-the-art in the numerical evaluation of wind loads on buildings. Important aspects of numerical modeling including (i) turbulence modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall treatments, and (vi) quantification of wind loads using the techniques of computational fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation (LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES are discussed based on physical realism and ease of application for wind load evaluation. Overall LES based simulations seem suitable for wind load evaluation. A need for computational wind load validations in comparison with experimental or field data is emphasized. A comparative study among numerical and experimental wind load evaluation on buildings demonstrated generally good agreements on the mean values, but more work is imperative for accurate peak design wind load evaluations. Particularly more research is needed on transient inlet boundaries and near wall modeling related issues.

Hybrid RANS/LES simulations of a bluff-body flow

  • Camarri, S.;Salvetti, M.V.;Koobus, B.;Dervieux, A.
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.407-426
    • /
    • 2005
  • A hybrid RANS/LES approach, based on the Limited Numerical Scales concept, is applied to the numerical simulation of the flow around a square cylinder. The key feature of this approach is a blending between two eddy-viscosities, one given by the $k-{\varepsilon}$ RANS model and the other by the Smagorinsky LES closure. A mixed finite-element/finite-volume formulation is used for the numerical discretization on unstructured grids. The results obtained with the hybrid approach are compared with those given by RANS and LES simulations for three different grid resolutions; comparisons with experimental data and numerical results in the literature are also provided. It is shown that, if the grid resolution is adequate for LES, the hybrid model recovers the LES accuracy. For coarser grid resolutions, the blending criterion appears to be effective to improve the accuracy of the results with respect to both LES and RANS simulations.

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

Improved version of LeMoS hybrid model for ambiguous grid densities

  • Shevchuk, I.;Kornev, N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-281
    • /
    • 2018
  • Application of the LeMoS hybrid (LH) URANS/LES method for the wake parameters prediction is considered. The wake fraction coefficient is calculated for inland ship model M1926 under shallow water conditions and compared to results of PIV measurements. It was shown that due to lack of the resolved turbulence at the interface between LES and RANS zones the artificial grid induced separations can occur. In order to overcome this drawback, a shielding function is introduced into LH model. The new version of the model is compared to the original one, RANS $k-{\omega}$ SST and SST-IDDES models. It is demonstrated that the proposed modification is robust and capable of wake prediction with satisfactory accuracy.

A RANS modeling of backward-facing step turbulent flow in an open channel (개수로에서의 후향단차 난류 흐름 RANS 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.147-157
    • /
    • 2022
  • The backward-facing step (BFS) is a benchmark geometry for analyzing flow separation occurred at the edge and resulting development of shear layer and recirculation zone that are occupied by turbulent flow. It is important to accurately reproduce and analyze the mean flow and turbulence statistics of such flows to design physically stable and performance assurance structure. We carried out 3D RANS computations with widely used, two representative turbulence models, k-ω SST and RNG k-ε, to reproduce BFS flow at the Reynolds number of 23,000 and the Froude number of 0.22. The performance of RANS computations is evaluated by comparing numerical results with an experimental measurement. Both RANS computations with two turbulence models appear to reasonably well reproduce mean flow in the shear layer and recirculation zone, while RNG k-ε computation results in about 5% larger velocity between the outer edge of boundary layer and the free surface above the recirculation zone than k-ω SST computation and experiment. Both turbulence models underestimate the shear stress distribution experimentally observed just downstream of the sharp edge of BFS, while shear stresses computed in the boundary layer downstream of reattachment point are agree reasonably well with experimental measurement. RNG k-ε modeling reproduces better shear stress distribution along the bottom boundary layer, but overestimates shear shear stress in the approaching boundary layer and above the bottom boundary layer downstream of the BFS.

THE STUDY ON THE SEPARATED FLOW OF A HUMP USING RANSMODELING (RANS 모델링을 이용한 Hump 형상의 박리 유동에 대한 연구)

  • Lee, J.;Bae, J.H.;Jung, K.J.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • In this paper, separated flow characteristics is studied using the RANS(Reynold-averaged Navier-Stokes) modeling. The analysis is performed for the NASA's hump configuration which is the combination of a flat plate and a hump. This configuration was used in NASA's flow control workshop and it was one of validation cases for RANS and LES simulations. The separation occurs at the 65% of model length where a slot is positioned for the flow control. No flow control case and steady suction case are studied using RANS modeling. The Spalart-Allmaras model and the SST(Shear Stress Transport) model are applied and their accuracy are compared. To correlate CFD analysis with experimental data, the optimal boundary condition was investigated and the effect of a cavity around the slot is studied for the no flow case.

Turbulence Modeling considering the Effects of Submerged Vegetation Flows (침수식생 흐름의 특성을 반영한 난류모델링)

  • Song, Youngdae;Lee, Seonmin;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.127-127
    • /
    • 2017
  • 침수식생이 식재된 개수로에서 식생밀도에 따라 유동 및 난류의 특성이 변화된다. 이러한 특성은 식생에서의 유사, 영양물질, 용존 산소 등에 영향을 미치며 수중 생물의 서식에 변화를 준다. 따라서 침수식생이 식재된 개수로 흐름을 이해하는 것은 중요하게 여겨지고 있으며 많은 선행연구자들에 의해 실험 및 수치모의를 통해 활발히 연구되고 있다. 하지만 대부분의 RANS(Reynolds-Averaged Navier-Stokes)를 기반으로 한 선행연구에서는 침수식생의 흐름 특성을 반영하지 않은 모형을 이용하여 정확한 모의 결과를 도출하지 못 하였다. 이에 정확한 침수식생 흐름을 수치모의하기 위해서는 침수식생 흐름의 특성을 반영한 지배방정식을 이용해야 한다. 본 연구의 목적은 침수식생 흐름의 특성을 RANS 모형 중의 하나인 SA (Spalart-Allmaras) model에 반영하고, 식생밀도에 따른 유동 및 난류량을 실측치와 비교하는 것이다. RANS 방정식을 이용하여 난류모델링을 하였으며, 난류폐합문제를 해결하기 위해서 modified SA model을 이용하였다. 침수식생에서의 흐름을 해석하기 위해 운동량방정식에 식생항력을 추가하였다. 선행연구자의 식생수로 실험을 바탕으로 모형검증을 하였으며, 식생밀도에 따라 평균유속 및 난류구조를 확인하였다.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

Shape Optimization of a Rotating Two-Pass Duct with a Guide Vane in the Turning Region (회전하는 냉각유로의 곡관부에 부착된 가이드 베인의 형상 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.66-76
    • /
    • 2011
  • The heat transfer and pressure loss characteristics of a rotating two-pass channel with a guide vane in the turning region have been studied using three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis, and the shape of the guide vane has been optimized using surrogate modeling optimization technique. For the optimization, thickness, location and angle of the guide vanes have been selected as design variables. The objective function has been defined as a linear combination of the heat transfer and the friction loss related terms with a weighting factor. Latin hypercube sampling has been applied to determine the design points as design of experiments. A weighted-average surrogate model, PBA has been used as the surrogate model. The guide vane in the turning region does not influence the heat transfer in the first passage upstream of the turning region, but enhances largely the heat transfer in the turning region and the second passage. In an example of the optimization, the objective function has been increased by 13.6%.

Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models (대리모델들을 이용한 인쇄형 열교환기의 최적설계)

  • Lee, Sang-Moon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.