References
- Abbas, N., Kornev, N., 2016a. Study of unsteady loadings on the propeller under steady drift and yaw motion using URANS, hybrid (URANS-LES) and LES methods. Ship Technol. Res. Schiffstechnik 63 (2), 121-131. https://doi.org/10.1080/09377255.2016.1211582
- Abbas, N., Kornev, N., 2016b. Validation of hybrid URANS/LES methods for determination of forces and wake parameters of KVLCC2 tanker at maneuvering conditions. Ship Technol. Res. Schiffstechnik 63 (2), 96-109. https://doi.org/10.1080/09377255.2016.1157275
- Abbas, N., Kornev, N., Shevchuk, I., Anschau, P., 2015. CFD prediction of unsteady forces on marine propellers caused by the wake nonuniformity and nonstationarity. Ocean Eng. 659-672.
- Adamian, D.Y., Travin, A.K., 2013. Assessment of an approach to generating inflow synthetic turbulence for large eddy simulations of complex turbulent flows. Prog. Flight Phys. 5, 43-54.
- Bhushan, S., Walters, D.K., 2012. A dynamic hybrid Reynolds-averaged Navier StokeseLarge eddy simulation modeling framework. Phys. Fluids 24 (1). URL http://scitation.aip.org/content/aip/journal/pof2/24/1/ 10.1063/1.3676737.
- Davidson, L., Billson, M., 2006. Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27 (6), 1028-1042. URL http://www.sciencedirect.com/science/ article/pii/S0142727X06000488. https://doi.org/10.1016/j.ijheatfluidflow.2006.02.025
- Demirdzic, I., 2015. On the discretization of the diffusion term in finite- volume continuum mechanics. Numer. Heat. Transf. Part B Fundam. 68.
- Fr€ohlich, J., von Terzi, D., 2008. Hybrid LES/RANS methods for the simu- lation of turbulent flows. Prog. Aerosp. Sci. 44, 349-377. https://doi.org/10.1016/j.paerosci.2008.05.001
- Germano, M., 2004. Properties of the hybrid RANS/LES filter. Theor. Comput. Fluid Dyn. 17 (4), 225-231. URL https://doi.org/10.1007/s00162-004-0116-6.
- Gritskevich, M., Garbaruk, A., Schutze, J., Menter, F., 2011. Development of DDES and IDDES formulations for the k-u shear stress transport model. Flow Turbul. Combust. 88 (3), 431-449. URL https://doi.org/10.1007/s10494-011-9378-4.
- Kniesner, B., Saric, S., Mehdizadeh, A., Jakirlic, S., Hanjalic, K., Tropea, C., Sternel, D.C., Gauss, F., Schafer, M., January 2007. Wall treatment in les by rans models: method development and application to aerodynamic flows and swirl combustors. ERCOFTAC Bull. 72 (1), 33-40. URL http://tubiblio.ulb.tu-darmstadt.de/29995/.
- Kok, J., Dol, H., Oskam, B., van der Ven, H., Jan. 2004. Extra-large eddy simulation of massively separated flows. Aerospace sciences meetings. Am. Inst. Aeronautics Astronautics. https://doi.org/10.2514/6.2004-264.
- Kornev, N., Abbas, N., 2017. Vorticity Structures and Turbulence in the Wake of Full Block Ships. Journal of Marine Science and Technology. https:// doi.org/10.1007/s00773-017-0493-3.
- Kornev, N., Taranov, A., Shchukin, E., Kleinsorge, L., 2011. Development of hybrid URANS-LES methods for flow simulation in the ship stern area. Ocean. Eng. 38, 1831-1838. https://doi.org/10.1016/j.oceaneng.2011.09.024
- Lilly, D.K., 1992. A proposed modification of the Germano subgridescale closure method. Phys. Fluids A Fluid Dyn. (1989-1993) 4 (3), 633-635. URL http://scitation.aip.org/content/aip/journal/pofa/4/3/10.1063/1.858280.
- List, S., Rugner, K., Friedhoff, B., 2015. WAKE. An veranderliche Wassertiefen angepasste Konzepte zur Energiesparung durch Vergleichmassigung des Propellerzustroms. Bericht 2162.
- Menter, F., Ferreira, J.C., Esch, T., Konno, B., 2003a. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the International Gas Turbine Congress, pp. 2-7.
- Menter, F.R., Kuntz, M., Langtry, R., 2003b. Ten years of industrial experience with the SST turbulence model. In: Hanjalic, K., Nagano, Y., Tummers, M. (Eds.), Turbulence, Heat and Mass Transfer 4. Begell House, Inc.
- Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R., 2003. The innereouter layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24 (4), 538-550 selected Papers from the Fifth International Conference on Engineering Turbulence Modelling and Measurements. URL http://www.sciencedirect.com/science/article/pii/ S0142727X03000481.
- Rajamani, B., Kim, J., 2010. A hybrid-filter approach to turbulence simulation. Flow Turbul. Combust. 85 (3), 421-441. URL https://doi.org/10.1007/s10494-010-9254-7.
- Sagaut, P., Deck, S., Terracol, M., 2013. Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods : Applications and Guidelines. Imperial College Press. URL http://books.google.de/books?id=FUB7MAEACAAJ.
- Sanchez-Rocha, M., Menon, S., 2011. An order-of-magnitude approximation for the hybrid terms in the compressible hybrid RANS/LES governing equations. J. Turbul. 12, N16. URL https://doi.org/10.1080/14685248. 2011.560153.
- Schlichting, H., 2000. Boundary Layer Theory. Springer.
- Spalart, P., Allmaras, S., Jan. 1992. A one-equation turbulence model for aerodynamic flows. Aerospace Sciences Meetings. Am. Inst. Aeronautics Astronautics. https://doi.org/10.2514/6.1992-439.
- Spalart, P., Jou, W., Strelets, M., Allmaras, S., 1997. Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach. In: International Conference on DNS/LES, Aug. 4-8, 1997, Ruston, Louisiana.
- Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A., 2006. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20 (3), 181-195. URL https:// doi.org/10.1007/s00162-006-0015-0.
- Strelets, M., Jan. 2001. Detached eddy simulation of massively separated flows. Aerospace Sciences Meetings. Am. Inst. Aeronautics Astronautics. https://doi.org/10.2514/6.2001-879.
- Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620-631. URL http://scitation.aip.org/content/aip/journal/cip/12/6/10.1063/1.168744.
Cited by
- Potential and limitations of scale resolved simulations for ship hydrodynamics applications vol.66, pp.2, 2019, https://doi.org/10.1080/09377255.2019.1574965