• 제목/요약/키워드: RADIOIODINATION

검색결과 23건 처리시간 0.018초

방사성요오드화반응-IV,V보-과산화수소를 이용한 요오드표지 합성법의 검토 (Radioiodination-IV & V-Study on the radioiodination of organic compounds by a hydrogen peroxide procedure)

  • 김유선;김태영
    • 대한화학회지
    • /
    • 제14권2호
    • /
    • pp.169-177
    • /
    • 1970
  • A study was made on the radioiodination of organic compounds in presence of hydrogen peroxide both in aqueous and organic solvent systems. In case of the reaction of rosebengal, Hippuran, and 5-iodo-uracil the aqueous reaction system could give high labelling yield within a relatively short reaction time. Labelling yield of average 50% could be obtained within 30 minutes of reaction sequence. In cases of organic solvent systems (D.M.S.O., D.M.F., and Dioxane) the solvent system of D.M.S.O. could give better yield for neutral organic compounds, where as D.M.F. and Dioxane gave better labelling result for acidic materials. Especially, o-iodobenzoic acid, o-iodotoluene, and pentachlorophenol could be labelled better in organic solvent system.

  • PDF

Radioiodination strategies for carborane compounds

  • Rajkumar Subramani;Abhinav Bhise;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제8권1호
    • /
    • pp.39-44
    • /
    • 2022
  • The development of methods for the inert and stable radiohalogenation of targeted radiopharmaceuticals is a prerequisite for real-time diagnosis and therapy using radiohalogenated radiopharmaceuticals. Radiohalogenated carboranes demonstrate superior stability in vivo and versatile applications compared with directly labeled tyrosine analogues or synthetically modified organic compounds. Herein, we focus on the most common approaches for the radioiodination (123l, 124l, 125l, and 131l) of carborane derivatives.

Radiosynthesis of 125I-labeled 2-cyanobenzothiazole: A new prosthetic group for efficient radioiodination reaction

  • Mushtaq, Sajid;Choi, Dae Seong;Jeon, Jongho
    • 대한방사성의약품학회지
    • /
    • 제3권1호
    • /
    • pp.44-51
    • /
    • 2017
  • Herein we report an efficient radiolabeling method based on a rapid condensation reaction between N-terminal cysteine and 2-cyanobenzothiazole (CBT). Radioiodination of 2-cyano-6-hydroxybenzothiazole 2 was carried out using chloramine-T to give $^{125}I$-labeled CBT ([$^{125}I$]1) with a high radiochemical yield ($90{\pm}6%$ isolated yield, n=3) and radiochemical purity (>99%). To evaluate the radiolabeling efficiency of $^{125}I$-labeled CBT, model compounds, L-cysteine and N-terminal cysteine conjugated cRGD peptide were reacted with [$^{125}I$]1 under mild conditions. The radiolabeling reactions rapidly provided the $^{125}I$-labeled products [$^{125}I$]5 and [$^{125}I$]6 with excellent radiochemical yields and radiochemical purity. Therefore, we demonstrate that [$^{125}I$]1 will be a useful prosthetic group for radioactive iodine labeling of N-terminal cysteine bearing biomolecules.

부신수실 영상용 $^{131}I$ 표지 메타요오도벤질구아니딘 $(^{131}I-MIBC)$의 제조에 관한 연구 (Studies on Preparation of $^{131}I$ Labelled m-Iodobenzylguanidine $(^{131}I-MIBG)$ for Adrenomedullary Imaging)

  • 박경배;오옥두;김재록
    • 대한핵의학회지
    • /
    • 제24권1호
    • /
    • pp.101-107
    • /
    • 1990
  • To develop $^{131}I-labelled$ m-iodobeneylguanidine $(^{131}I-MIBG)$, various experiments such as synthesis of MIBG, establishment of labelling conditions, determination of radiochemical purity, and examination of stability were carried out. 1) m-Iodobenzylguanidine (MIBG) sulfate was synthesized with a total yield of 62.4% by the condensation of m-iodobenzylamine hydrochloride with cyanamide via MIBG bicarbonate. Its physical properties, IR, $^1H-NMR$, and elemental analysis data were nearly identical to those of literature. 2) Freeze-dried or vacuum-dried kit vials were prepared from the mixture so as to contain MIBG (2 mg), ascorbic acid (10 mg), copper (II) sulfate (0.14 mg), and tin (II) sulfate (0.5 mg) per vial. Copper ( I ) catalyzed radioiodination of MIBG was carried out using kit vials and 0.01 M $H_2SO_4$ as solvent at $100^{\circ}C$ for 30 min under nitrogen atmosphere (optimal conditions). Labelling yield was 98% and radiochemical purity was 99.5%, respectively. 3) Solid-phase radioiodination of MIBG was carried out at $155^{\circ}C$ for 30 min using the prepared vials to contain MIBG (2 mg) and ammonium sulfate (10 mg). Duplicate reactions under the same conditions showed labelling yield of 95% and radiochemical purity of 99.5%. 4) $^{131}I-MIBG$ prepared either by catalytic or by solid-phase exchange method showed radio-chemical purity of 99% even after 3 days storing at room temperature.

  • PDF

Synthesis of a PEGylated tracer for radioiodination and evaluation of potential in tumor targeting

  • Abhinav Bhise;Sushil K Dwivedi;Kiwoong Lee;Jeong Eun Lim;Subramani Rajkumar;Woonghee Lee;Seong Hwan Cho;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.79-84
    • /
    • 2021
  • Radiopharmaceuticals are important for tumor diagnosis and therapy. To deliver a radiotracer at the desired target excluding non-targeted tissues is difficult The development of a targeted tracer that has a good clearance profile while maintaining high biostability and biocompatibility is key to optimizing its biodistribution and transport across biological barriers. Improving the hydrophilicity of radiotracers by PEGylation can reduce serum binding, allowing the tracer to circulate without retention and reducing its affinity for non-targeted tissues. In this study, we synthesized a new benzamido tracer (SnBz-PEG36) with the introduction of a low molecular weight polyethylene glycol unit (PEG36, ~2,100 Da). The tumor targeting efficiency and biodistribution of [131I]-Bz-PEG36 or radiotracer-loaded liposomes were evaluated after their administration to normal mice or mouse tumor models including CT26 (xenograft) and 4T1 (xenograft and orthotopic). Most of the radiotracer was cleared out rapidly (1-24 h post-administration) through the kidney and there was little tumor uptake.

Synthesis of Radioiodinated Carbocyclic Cytosine Analogues

  • Ahn, Hyun-Seok;An, Gwang-Il;Rhee, Hak-June
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1931-1935
    • /
    • 2011
  • The synthesis of carbocyclic analogues of normal nucleosides has grown exclusively since they have shown potential antiviral and antitumor activities. Radiolabeled cis-1-[4-(hydroxy-methyl)-cyclopent-2-enyl]-5-$[^{124}I]$-iodocytosine (carbocyclic d4IC) and cis-1-[4-(hydroxy-methyl)-cyclopent-2-enyl]-5-(2-$[^{124}I]$iodovinyl)cytosine(carbocyclic d4IVC) were synthesized. The synthetic route employed Pd(0)-catalyzed coupling reaction together with organotin and exchange reaction for radioiodination as key reactions. Carbocyclic $[^{124}I]$d4IC gave more than 75% radiochemical yield with greater than 95% radiochemical purity. Carbocyclic $[^{124}I]$d4IVC gave more than 80% radiochemical yield with greater than 95% radiochemical purity.

Cispatin 내성인 사람 위암 세포주 SNU-1의 복합약제내성 및 Verapamil의 효과 (Multidrug Resistance and Cytotoxicity of Anticancer Drug by Verapamil in Cisplatin Resistant Human Stomach Cancer Cell)

  • 손성권;김정희
    • Journal of Yeungnam Medical Science
    • /
    • 제9권1호
    • /
    • pp.75-89
    • /
    • 1992
  • 복합약제내성암세포주의 출현은 암의 화학 요법에 있어서 중요한 문제점중의 하나이며 이 복합내성 암세포의 출현에 대한 정확한 기전은 아직 밝혀져 있지 않다. 본 실험에서는 약제내성 암세포의 다른 항암제에 대한 복합내성 형성정도와 calcium 길항제인 verapamil에 의한 내성극복 정도를 비교하고 내성 암세포의 세포막 단백질의 변화를 관찰하였다. 사람의 위암 세포주 SNU-1을 cisplatin 농도 $0.001{\mu}M$에서 시작하여 $10{\mu}M$까지 증가시켜 내성세포 SNU-1/$Cis_5$를 얻었으며, MTT assay로 세포성장을 관찰한 결과 doubling time은 SNU-1이 약 29 시간, SNU-1/$Cis_5$는 약 38시간으로 내성세포가 감수성세포보다 성장속도가 느린 것을 관찰하였다. 약제 감수성 검사를 위해서 4일간의 MTT assay로 대조군에 대한 50% 세포 생존시의 약제농도 $IC_{50}$를 비교하여 상대적 내성도 (Relative Resistance, RR)를 측정하였는데 cisplatin, 81.4; vinblastine, > 43.0; epirubicin, 22.9 ; dactinomycin, 16.0 ; etoposide, 15.0 ; vincristine, 9.2 ; adriamycin, 5.7 ; aclarubicin, 5.3으로 관찰되었고 그외의 약제인 cyclophosphamide, 5-fluorouracil, methotrexate, daunorubicin에서는 낮게 나타났다. $10{\mu}M$의 verapamil에 의한 내성 억제 효과는 vincristine, 13.1 ; epirubicin, 10.0 ; etoposide, 6.3 ; vinblastine, 4.4 ; dactinomycin, 3.6 ; daunorubicin, 2.4로 나타났다. Radioiodination을 이용한 SDS-PAGE로 SNU-1/$Cis_5$에서 항암제 내성과 관련된 것으로 여겨지는 51,400와 81,300 dalton의 막단백질의 발현을 관찰하였다.

  • PDF

국산 항 CEA 항체의 I-131, Tc-99m 표지법 확립 및 면역학적 특성 분석 (Establishment of I-131, Tc-99m Labeling Methods to In-house Anti-CEA Antibodies and Evaluation of the Immunological Characteristics)

  • 정준기;이동수;이명철;정홍근;고창순;홍미경;최석례;서일택;정준호
    • 대한핵의학회지
    • /
    • 제26권2호
    • /
    • pp.346-354
    • /
    • 1992
  • 서울대학교 의과대학에서 개발한 항 CEA항체에 대한 방사성옥소 및 $^{99m}Tc$의 표지법을 개발하고 이런 표지항체의 면역학적 특성을 분석하였다. 1) 8가지의 항 CEA의 단세포군 항체중 CEA-79항체와 CEA-92항체가 가장 좋은 면역학적 특성을 보였다. 표지항체의 면역반응성은 60% 정도이었고, 항원/항체 친화상수는 $1\sim2\times10^9l/m$ 이었다. 2) CEA-79항체는 chloramine-T법으로, CEA-92항체는 iodogen 법으로 방사성옥소를 표지 하는 것이 가장 좋은 표지효율 및 면역 반응성을 보였다. 3) CEA-79항체는 0.5 mCi/mg에서부터 100mCi/mg까지 비방사능을 변화시켰을 때 표지효율이나 면역 반응성에 유의한 차이는 발견할 수 없었다. 4) Glucarate를 이용한 pretargeting transchelation법으로 CEA-79항체를 $^{99m}Tc$로 표지하는 조건을 확립하였다. 표지효율은 $60\sim70%$ 이었다. 본 실험을 통하여 얻은 적절한 조건의 $^{131}I$$^{99m}Tc$표지방법의 확립은 앞으로 방사면역신티그라피와 방사면역치료법에 유용하게 사용될 수 있을 것으로 기대된다.

  • PDF

Synthesis of 125I-labeled tetrazine for efficient radiolabeling of human serum albumin

  • Shim, Ha Eun;Jeon, Jongho
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.98-102
    • /
    • 2017
  • We demonstrate a detail protocol for the radiosynthesis of a $^{125}I-labeled$ tetrazine prosthetic group and its application to the efficient radiolabeling of trans-cyclooctene-group conjugated human serum albumin (3) using inverse-electron-demand Diels-Alder reaction. Radioiodination of the stannylated precursor (2) was carried out by using [$^{125}I$]NaI and chloramine T as an oxidant at room temperature for 15 min. After HPLC purification of the crude product, the purified $^{125}I-labeled$ azide ([$^{125}I$]1) was obtained with high radiochemical yield ($65{\pm}8%$, n = 5) and excellent radiochemical purity (>99%). Inverse-electron-demand Diels-Alder reaction between ([$^{125}I$]1) and 3 gave the $^{125}I-labeled$ human serum albumin ([$^{125}I$]4) with more than 99% of radiochemical yield as determined by radio-thin-layer chromatography (radio-TLC). These results clearly indicate that the present radiolabeling method will be useful for the efficient and convenient radiolabeling of trans-cyclooctene-group containing biomolecules.