DOI QR코드

DOI QR Code

Radiosynthesis of 125I-labeled 2-cyanobenzothiazole: A new prosthetic group for efficient radioiodination reaction

  • Mushtaq, Sajid (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Dae Seong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jeon, Jongho (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • Received : 2017.06.06
  • Accepted : 2017.06.26
  • Published : 2017.06.30

Abstract

Herein we report an efficient radiolabeling method based on a rapid condensation reaction between N-terminal cysteine and 2-cyanobenzothiazole (CBT). Radioiodination of 2-cyano-6-hydroxybenzothiazole 2 was carried out using chloramine-T to give $^{125}I$-labeled CBT ([$^{125}I$]1) with a high radiochemical yield ($90{\pm}6%$ isolated yield, n=3) and radiochemical purity (>99%). To evaluate the radiolabeling efficiency of $^{125}I$-labeled CBT, model compounds, L-cysteine and N-terminal cysteine conjugated cRGD peptide were reacted with [$^{125}I$]1 under mild conditions. The radiolabeling reactions rapidly provided the $^{125}I$-labeled products [$^{125}I$]5 and [$^{125}I$]6 with excellent radiochemical yields and radiochemical purity. Therefore, we demonstrate that [$^{125}I$]1 will be a useful prosthetic group for radioactive iodine labeling of N-terminal cysteine bearing biomolecules.

Keywords

References

  1. Mushtaq S, Jeon J, Shaheen A, Jang BS, Park SH. Critical analysis of radioiodination techniques for micro and macro organic molecules. J Radioanal Nucl Chem 2016;1:859-889.
  2. Zhou W, Chen J. I-123 metaiodobenzylguanidine imaging for predicting ventricular arrhythmia in heart failure patients. J Biomed Res 2013; 27:460-466.
  3. Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy. Chem Soc Rev 2005;34:153-163. https://doi.org/10.1039/b313872k
  4. Jeon J, Shim HE, Mushtaq S, Kang JA, Nam YR, Yoon S, Kim HR, Choi DS, Jang BS, Park SH. Radiosynthesis and in vivo evaluation of [$^{125}I$] 2-(4-iodophenethyl)-2- methylmalonic acid as a potential radiotracer for detection of apoptosis. J Radioanal Nucl Chem 2016;308:23-29. https://doi.org/10.1007/s10967-015-4346-4
  5. Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, Williams LE, Chatziioannou AF, Gambhir SS, Wu AM. $^{124}I$-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigenspecific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44:1962-1969.
  6. Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Gorges R, Müller SP, Bockisch A, Debatin JF, Brandau W. Value of $^{124}I$-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004;14:2092- 2098. https://doi.org/10.1007/s00330-004-2350-0
  7. Phan HT, Jager PL, Paans AM, Plukker JT, Sturkenboom MG, Sluiter WJ, Wolffenbuttel BH, Dierckx RA, Links TP. The diagnostic value of $^{124}I$-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008;35:958-965. https://doi.org/10.1007/s00259-007-0660-6
  8. Benamer TS, Patterson J, Grosset DG, Booij J, De Bruin K, Van Royen E, Speelman JD, Horstink MH, Sips HJ, Dierckx RA, Versijpt J, Decoo D, Van Der Linden C, Hadley DM, Doder M, Lees AJ, Costa DC, Gacinovic S, Oertel WH, Pogarell O, Hoeffken H, Joseph K, Tatsch K, Schwarz J, Ries V. Accurate differentiation of Parkinsonism and essential tremor using visual assessment of [$^{123}I$]-FPCIT SPECT imaging: the [$^{123}I$]-FP-CIT study group. Mov Disord 2000;15:503-510. https://doi.org/10.1002/1531-8257(200005)15:3<503::AID-MDS1013>3.0.CO;2-V
  9. Lebasnier A, Lamotte G, Manrique A, Peyronnet D, Bouvard G, Defer G, Agostini D. Potential diagnostic value of regional myocardial adrenergic imaging using $^{123}I$-MIBG SPECT to identify patients with Lewy body diseases. Eur J Nucl Med Mol Imaging 2015;42:1043-1051. https://doi.org/10.1007/s00259-015-2989-6
  10. El Majdoub F, Blau T, Hoevels M, Buhrle C, Deckert M, Treuer H, Sturm V, Maarouf M. Papillary tumors of the pineal region: a novel therapeutic option-stereotactic 125iodine brachytherapy. J Neurooncol 2012;109:99-104. https://doi.org/10.1007/s11060-012-0870-z
  11. Ba J, Peng H, Chen Y, Gao Y. Effects and mechanism analysis of vascular endothelial growth factor and salvianolic acid B on $^{125}I$-low density lipoprotein permeability of the rabbit aortary endothelial cells. Cell Biochem Biophys 2014;70:1533-1538. https://doi.org/10.1007/s12013-014-0089-z
  12. Yang Y, Bhandari KH, Panahifar A, Doschak MR. Synthesis, characterization and biodistribution studies of $^{125}I$-radioiodinated di-PEGylated bone targeting salmon calcitonin analogue in healthy rats. Pharma Res 2014;31:1146-1157. https://doi.org/10.1007/s11095-013-1237-7
  13. Patel N, Duffy BA, Badar A, Lythgoe MF, Arstad E. Bimodal imaging of inflammation with SPECT/CT and MRI using iodine-125 labeled VCAM-1 targeting microparticle conjugates. Bioconjugate Chem 2015;26:1542-1549. https://doi.org/10.1021/acs.bioconjchem.5b00380
  14. Wilbur DS. Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjugate Chem 1992;3:433-470. https://doi.org/10.1021/bc00018a001
  15. Cant AA, Champion S, Bhalla R, Pimlott SL, Sutherland A. Nickel-Mediated Radioiodination of Aryl and Heteroaryl Bromides: Rapid Synthesis of Tracers for SPECT Imaging. Angew Chem Int Ed 2013;52:7829-7832. https://doi.org/10.1002/anie.201302800
  16. Yan R, El-Emir E, Rajkumar V, Robson M, Jathoul AP, Pedley RB, Arstad E. One-Pot Synthesis of an $^{125}I$-Labeled Trifunctional Reagent for Multiscale Imaging with Optical and Nuclear Techniques. Angew Chem Int Ed 2011;50:6793- 6795. https://doi.org/10.1002/anie.201102072
  17. Seevers RH, Counsell RE. Radioiodination techniques for small organic molecules. Chem Rev 1982; 82:575-590. https://doi.org/10.1021/cr00052a002
  18. Yan R, Sander K, Galante E, Rajkumar V, Badar A, Robson M, El-Emir E, Lythgoe MF, Pedley RB, Arstad E. A onepot three-component radiochemical reaction for rapid assembly of $^{125}I$-labeled molecular probes. J Am Chem Soc 2013;135:703-709. https://doi.org/10.1021/ja307926g
  19. Press OW, Shan D, Howell-Clark J, Eary J, Appelbaum FR, Matthews D, King DJ, Haines AM, Hamann P, Hinman L, Shochat D. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res 1996;56:2123-2129.
  20. Bolton R. Radiohalogen incorporation into organic systems. J Label Compd Radiopharm 2002;45:485-528. https://doi.org/10.1002/jlcr.575
  21. Yamada A, Traboulsi A, Dittert LW, Hussain AA. Chloramine-T in radiolabeling techniques: III. Radioiodination of biomolecules containing thioether groups. Anal Biochem 2000;277:232-235. https://doi.org/10.1006/abio.1999.4378
  22. Crim JW, Garczynski SF, Brown MR. Approaches to radioiodination of insect neuropeptides. Peptides 2002;23:2045-2051. https://doi.org/10.1016/S0196-9781(02)00192-4
  23. Garg PK, Alston KL, Zalutsky MR. Catabolism of Radioiodinated Murine Monoclonal Antibody $F(abʹ)_2$ Fragment Labeled Using N-Succinimidyl 3-Iodobenzoate and Iodogen Methods. Bioconjugate Chem 1995;6:493-501. https://doi.org/10.1021/bc00034a020
  24. Vaidyanathan G, Zalutsky MR. Synthesis of N-succinimidyl 4-guanidinomethyl-3-[*I] iodobenzoate: a radio-iodination agent for labeling internalizing proteins and peptides. Nat Protoc 2007;2:282-286. https://doi.org/10.1038/nprot.2007.20
  25. Gifford AN, Kuschel S, Shea C, Fowler JS. Polymersupported organotin reagent for prosthetic group labeling of biological macromolecules with radioiodine. Bioconjugate Chem 2011;22:406-412. https://doi.org/10.1021/bc1004203
  26. Jeon J, Kang JA, Shim HE, Nam YR, Yoon S, Kim HR, Lee DE, Park SH. Efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using strainpromoted copper-free click reaction. Bioorg Med Chem 2015;23:3303-3308. https://doi.org/10.1016/j.bmc.2015.04.045
  27. Choi MH, Shim HE, Yun SJ, Kim HR, Mushtaq S, Lee CH, Park SH, Choi DS, Lee DE, Byun EB, Jang BS. Highly efficient method for $^{125}I$-radiolabeling of biomolecules using inverse-electron-demand Diels-Alder reaction. Bioorg Med Chem 2016;24:2589-2594. https://doi.org/10.1016/j.bmc.2016.04.029
  28. Jeon J, Shen B, Xiong L, Miao Z, Lee KH, Rao J, Chin FT. An Efficient Method for Site-specific $^{18}F$-Labeling of Biomolecules Using the Rapid Condensation Reaction between 2-Cyanobenzothiazole and Cysteine. Bioconjugate Chem 2012;23:1902-1908. https://doi.org/10.1021/bc300273m
  29. Choi MH, Shim HE, Nam YR, Kim HR, Kang JA, Lee DE, Park SH, Choi DS, Jang BS, Jeon J. Synthesis and evaluation of an $^{125}I$-labeled azide prosthetic group for efficient and bioorthogonal radiolabeling of cyclooctynegroup containing molecules using copper-free click reaction. Bioorg Med Chem Lett 2016;26:875-878. https://doi.org/10.1016/j.bmcl.2015.12.073