• Title/Summary/Keyword: RADIANCE

Search Result 342, Processing Time 0.025 seconds

Development of the GOCI Radiometric Calibration S/W (정지궤도 해양위성(GOCI) 복사보정 S/W 개발)

  • Cho, Seong-Ick;Ahn, Yu-Hwan;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.167-171
    • /
    • 2009
  • 정지궤도에서는 세계 최초의 해양관측위성으로 개발된 정지궤도 해양위성(GOCI, Geostationary Ocean Color Imager)은 통신해양기상위성(COMS, Communication, Ocean and Meterological Satellite)의 탑재체로서 2009년말 발사 예정이다. 정지궤도 해양위성의 복사보정은 센서의 전기적 특성에 의한 잡음을 제거하기 위한 암흑전류 교정(Dark Current Correction)을 먼저 수행한 다음, 주운영지상국인 해양위성센터(KOSC, Korea Ocean Satellite Center)에서 수신된 위성의 원시자료의 Digital Number(DN)를 실제 해양원격탐사에서 이용하는 물리량인 복사휘도(Radiance, $W/m^2/{\mu}m/sr$)로 변환하는 복사보정을 수행한다. 정확도 높은 복사보정을 수행하기 위해서는 기준광원의 복사휘도와 센서의 물리적 특성을 정확하게 알아야 한다. 정지궤도 해양위성 궤도상 복사보정(on-orbit radiometric calibration)에서는 태양이 기준광원이기 때문에, 기준 태양복사모델(Thuillier 2004 Solar Irradiance Model)에서 지구-태양간 거리 변화(1년 주기)를 보정한 태양의 방사도 (Irradiance)를 이용하고, 태양입사각에 대한 태양광 확산기의 감쇄 특성 변화를 고려하여 센서에 입력되는 복사휘도를 계산한다. 센서의 물리적 특성으로 인한 복사보정의 오차를 줄이기 위해 우주방사선 및 우주먼지(space debris)로 인해 위성 운용기간 중 그 특성이 저하되는 태양광 확산기(solar Diffuser)의 특성변화를 모니터링하기 위한 DAMD(Diffuser Aging Monitoring Device)를 이용한다. 정지궤도 해양위성 주관운영기관인 한국해양연구원의 해양위성센터에서는 정지궤도 해양위성 복사보정을 수행하기 위한 S/W를 통신해양기상위성 자료처리시스템 개발사업의 일환으로 개발하였으며, 관련 성능 시험을 수행하고 있다.

  • PDF

Improved Progressive Photon Mapping Using Photon Probing (포톤 탐사법을 이용한 개선된 점진적 포톤 매핑)

  • Lee, Sang-Gil;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • Photon mapping is a traditional global illumination method using many photons emitted from the light source for photo-realistic rendering. However, this method needs a lot of resources to perform tracing of millions of photons. Progressive photon mapping solves this problem. Typical progressive photon mapping performs ray tracing at first to find the hit points on diffuse surface of objects. Next, light source repeatedly emits a small number of photons in photon tracing pass, and power of photons in each sphere that has a fixed radius with the hit points in the center is accumulated. This method requires less resources than previous photon mapping, but it spends much time for gathering enough photons since each of photons progresses through a random direction and rendering high quality image. To improve the method, we propose photon probing that calculates variance of photons in the sphere and controls radius of sphere. In addition, we apply cone filter in radiance estimation step for reducing aliasing at the edges in result image.

Experimental Study on Surface Temperature Variation Characteristics of Rectangular Parallelepipeds Constructed by Different Materials for Varying Meteorological Conditions (기상 상태 변화에 따른 직육면체의 재질별 표면온도 변화 특성에 대한 실험 연구)

  • Kim, Dong-Geon;Choi, Jun-Hyuk;Kil, Tae-Jun;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.208-214
    • /
    • 2012
  • The spectral radiance received by a remote sensor is consisted of the self-emitted component directly from the target surface, the reflected component of the solar irradiance at the target surface, and the scattered component by the atmosphere without ever reaching the object surface. In general, the self-emitted component is the most important part in the infrared signatures from the target. We measured the solar irradiation, sky irradiation, air temperature, wind velocity, wind direction, relative humidity, and atmospheric pressure together with the surface temperatures of rectangular parallelepiped targets. The measured diurnal surface temperature variations on the three different rectangular parallelepiped targets constructed by the steel, aluminum and bakelite are obtained at the same time intervals. The measured surface temperature results show that the top surface temperature of bakelite recorded up tp $7.6^{\circ}C$ higher than that of aluminium and $6.1^{\circ}C$ higher than that of steel at 11 AM on the sunny condition. A complete set of measured data including the surface temperature of rectangular parallelepiped targets together with the detailed weather information can be a valuable reference for future study.

On Recent Variations in Solar Radiation and Daily Maximum Temperature in Summer (여름철 일 최고기온과 일사량의 최근 변동에 관하여)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.185-191
    • /
    • 2009
  • Few studies have attempted to analyze variations of daily maximum temperature in the summer whereas many studies have analyzed warming trends in other seasons with respect to greenhouse gases or urban heat islands. We analyzed daily maximum temperature data for the summer season (June to August) at 18 locations in South Korea from 1983 to 2007. Compared to the climatic normal (from 1971 to 2000), an average increase of $0.1^{\circ}C$ was found for the summer daily maximum temperature along with an increase of $0.61MJ\;m^{-2}$ in daily solar radiation. Approximately 65% of the annual variations of the summer daily maximum temperature could be explained by the solar radiance alone. Higher atmospheric transmittance due to lower aerosol concentration (especially of sulfur dioxide) is believed to have caused the recent increase in solar irradiance. Daily maximum temperature of the summer is expected to keep rising if the clean air activities are maintained in the future.

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

The Reflectance Patterns of land cover During Five Years ($2004{\sim}2008$) Based on MODIS Reflectance Temporal Profiles (시계열 MODIS를 이용한 토지피복의 반사율 패턴: 2004년$\sim$2008년)

  • Yoon, Jong-Suk;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.113-126
    • /
    • 2009
  • With high temporal resolution, four times receiving during a day, MODIS images from Terra and Aqua satellites provide several advantages for monitoring spacious land. Especially, diverse MODIS products related to land, atmosphere, and ocean have been provided with radiance MODIS images. The products such as surface reflectance, NDVI, cloud mask, aerosol etc. are based on theoretical algorithms developed in academic areas. Comparing with other change detection studies mainly using the vegetation index, this study investigated temporal surface reflectance of landcovers for five years from 2004 to 2008. The near infrared (NIR) reflectance in urbanized and burned areas showed considerable difference before and after events. The specific characteristics of surface reflectance temporal profiles are possibly useful for the detection of landcover changes and classification.

Application of Linear Spectral Mixture Analysis to Geological Thematic Mapping using LANDSAT 7 ETM+ and ASTER Satellite Imageries (LANDSAT 7 ETM+와 ASTER영상정보를 이용한 선형분광혼합분석 기법의 지질주제도 작성 응용)

  • Kim Seung Tae;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.369-382
    • /
    • 2004
  • The purpose of this study is the investigation of applicability of LSMA(Linear Spectral Mixture Analysis) on the geological uses with different radiometric and spatial types of sensor images such as Terra ASTER and LANDSAT 7 ETM+. As for the actual application case, geologic mapping for mineral exploration using ASTER and ETM+ at the Mongolian plateau region was carried out. After the pre-processing such as the geometric corrections and calibration of radiance, 7 endmembers, as spectral classes for geologic rock types, related to spectral signature deviation for the given application was determined by the pre-surveyed geological mapping information and the correlation matrix analysis, and total 20 images of ASTER and ETM+ were used to LSMA processing. As the results, fraction maps showing individual mineral types in the study area are presented. It concluded that this approach based on LSMA using ETM+ and ASTER is regarded as one of the effective schemes for geologic remote sensing.

Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula (한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법)

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.

Model Calculation of Total Radiances for KOMPSAT-2 MSC (다목적실용위성 2호 MSC 총복사량의 모델 계산)

  • 김용승;강치호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.211-218
    • /
    • 2001
  • We have performed the calculation of total radiances for the KOMPSAT-2 Multispectral Camera (MSC) using a radiative transfer model of MODTRAN and examined its results. To simulate four seasonal conditions in the model calculation, we used model atmospheres of mid-latitude winter and summer for calculations of January 15 and July 15, and US standard for April 15 and October 15, respectively. Orbital parameters of KOMPSAT-2 and the seasonal solar zenith angles were taken into account. We assumed that the meteorological range is the tropospheric aerosol extinction of 50 km and surface albedo is the global average of clear-sky albedo of 0.135. MSC contract values are found to be considerably greater in the MSC spectral range than the total radiances calculated with the above general conditions. It is also shown that the spectral behavior of model results with the constant surface albedo differs from the pattern of MSC contract values. From these results, it can be inferred that the forthcoming MSC images would be somewhat dark.

Optimization and Stabilization of Satellite Data Distributed Processing System (위성 데이터 분산처리 시스템 최적화 및 안정화)

  • Choi, Yun-Soo;Lee, Won-Goo;Lee, Min-Ho;Kim, Sun-Tae;Lee, Sang-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.13-21
    • /
    • 2013
  • The goal of this paper is to provide performance improvement and stability for satellite data correction of some distortions due to cloud or radiance through distributed processing on cluster. To do this, we proposed and implemented SGE(Sun Grid Engine) based distributed processing methods using local storages and a status table. In the verification, the experiment result revealed that the proposed system on seven nodes improved the processing speed by 138.81% as compare to the existing system and provided good stability as well. This result showed that the proposed distributed processing work is more appropriate to process CPU bound jobs than I/O bound jobs. We expect that the proposed system will give scientists improved analysis performance in various fields and near-real time analysis services.