• Title/Summary/Keyword: R2R XRD

Search Result 478, Processing Time 0.025 seconds

Electrical and structural properties of Ti thin films by sputtering (스퍼터링법으로 제조한 타이타늄 박막의 전기적 및 구조적 특성)

  • Kim, Young-Jun;Park, Jung-Yun;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.694-698
    • /
    • 2002
  • Ti films were deposited onto $100{\times}100$ mm alumina substrates using dc magnetron sputtering under the following conditions; substrate temperature of R.T. ${\sim}400^{\circ}C$, annealing temperature of $100{\sim}400^{\circ}C$ and sputtering gas pressure of $1.3{\sim}3.0{\times}10^{-2}$ Torr. And the films were examined by X-ray diffraction analysis (XRD), scanning electron microscopy(SEM) and 4-point measurement system. The best electrical and structural properties obtained by substrate temperature of ${\sim}200^{\circ}C$, target-substrate distance of ~14 cm and sputtering pressure of $1.3{\sim}1.7{\times}10^{-2}$ Torr. Also at that condition the most excellent adhesion was observed.

  • PDF

Synthesis of Quinoxaline Derivatives at Room Temperature Using Magnetic Material Separated from Coal Fly Ash

  • Dhokte, Aashish O.;Sakhare, Mahadeo A.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • An efficient synthesis of quinoxalines derivatives is described using magnetic material separated from coal fly ash. Coal fly ash is a waste material generated in huge amount by burning of coal for the generation of electricity in thermal power station. It contains $SiO_2$, $Al_2O_3$ and magnetic material in significant amounts, from which magnetic material was separated by using magnetic separation method. These separated magnetic material further characterized by XPS, XRD, EDS, FTIR, SEM, TEM and BET techniques. The merits of present method are mild reaction conditions, and also excellent yields and short reaction times.

A sintering Behavior of Glass/Ceramic Composite used as substrate in High Frequency Range (고주파대역에서 기판으로 쓰이는 Glass/Ceramics Composite의 소결거동)

  • 이찬주;김형준;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.302-307
    • /
    • 2000
  • The objective of this study was to investigate the sintering behavior, crystallization characteristic of glass-ceramic and optimal sintering condition on the glass/ceramic composite for fabricating substrate of LTCC. Glass/ceramic composite was made from alumina powder and glass frit, which was composed of SiO2-TiO2-RO-PbO/(R: Ba, Sr, Ca), and was sintered for 0, 30, 60minutes in the temperature range from 700$^{\circ}C$ to 1000$^{\circ}C$. Properties of frit and glass/ceramic compsoite were analyzed by DTA, XRD, SEM and Network Analyzer and so on. Main sintering mechanism was densification occurred above 730$^{\circ}C$ by viscous flow and crystallization starting about 780$^{\circ}C$ affected sintering also. So viscous flow was affected by sintering temperature, duration time, and creation of crystallization phase etc. From this study, it was possible to fabricate glass/ceramic composite by changing sintering temperature and duration time.

  • PDF

Dispersion of nanodiamond by Chemical treatment (나노다이아몬드의 화학적 처리에 따른 분산 특성)

  • Park, Jong-Soon;Kim, Hong;Kang, Soon-Kuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.999-1004
    • /
    • 2011
  • In this study, nanodiamod's surface have formed carboxyl, hydroxyl, amine radical for the purpose of use of nanodiamond synthesized by detonation, and then it has widely stable dispersion and slowly sedimentation in solvent. Thus nanodiamonds obtained by chemical treatment were used to analyze the structure, surface statement, particle size and sedimentation specification in solvent for method X-ray diffration(XRD), scanning electron microscope energy diffraction spectroscopy(SEM-EDS), Fourier transform infrared spectroscopy (FTIR), automic force microscope(AFM).

Pd-doped $SnO_2$-based oxide semiconductor thick-film gas sensors prepared by three different catalyst-addition processes

  • Lee, Kyu-Chung;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Three different procedures for adding Pd compounds to $SnO_2$ particles have been investigated. These processes are: (1) coprecipitation; (2) dried powder impregnation; and (3) calcined powder impregnation. The microstructures of $SnO_2$ particles have been analyzed by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). In the coprecipitaion method, the process does not restrain the growth of $SnO_2$ particles and it forms huge agglomerates. In the dried powder impregnation method, the process restrains the growth of $SnO_2$ particles and the surfaces of the agglomerates have many minute pores. In the calcined powder impregnation method, the process restrains the growth of $SnO_2$ particles further and the agglomerates have a lot more minute pores. The sensitivity ($S=R_{air}/R_{gas}$) of the $SnO_2$ gas sensor made by the calcined powder impregnation process shows the highest value (S = 21.5 at 5350 ppm of $C_3H_8$) and the sensor also indicates the lowest operating temperature of around $410^{\circ}C$. It is believed that the best result is caused by the plenty of minute pores at the surface of the microstructure and by the catalyst Pd that is dispersed at the surface rather than the inside of the agglomerate. Schematic models of Pd distribution in and on the three different $SnO_2$ particles are presented.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

Microstructure and Superconducting Properties of (Bi,Pb)-Sr-Ca-Cu-O-(Ag, Au, Mg) Composites ((Bi,Pb)-Sr-Ca-Cu-O-(Ag, Au, Mg) 복합체의 미세구조와 초전도 특성)

  • 이민수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.447-454
    • /
    • 2003
  • Samples were prepared by the solid-state reaction method. The nominal composition of the samples was B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+{delta}$ prepared from powder of B $i_2$ $O_3$, PbO, SrC $O_3$, CaC $O_3$, and CuO. They were pulverized, mixed with AgO, A $u_2$ $O_3$and MgO of 50 wt%. Finally, they were sintered at 820 to 85$0^{\circ}C$ in air. The structural characteristics, the microstructure of surface and the critical temperature with respect to the each samples were analyzed by XRD, $T_{c}$, SEM and EDS respectively. It was found that the the critical temperature of the silver oxide additive samples (99.58 K) is higher than those of gold or magnesium oxides additive samples, but all those values are lower than that of pure Bi-2223 phase. The microstructure of surface showed the tendency which the AgO additive samples become more minuteness than A $u_2$ $O_3$ and MgO additive samples.s.samples.s.

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

Microwave dielectric properties of $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$ ($B_2O_3$ 첨가에 따른 $0.96MgTiO_3-0.04SrTiO_3$의 마이크로파 유전특성)

  • Kim, Jung-Hun;Choi, Eui-Sun;Lee, Mun-Ki;Jung, Jang-Ho;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.682-685
    • /
    • 2002
  • The $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$(10wt%) were prepared by the conventional mixed oxide method. The structural properties were investigated with sintering temperature by XRD. According to the X-ray diffraction pattern of the $0.96MgTiO_3-0.04SrTiO_3$ ceramics with $B_2O_3$(10wt%), the ilmenite $MgTiO_3$ and perovskite $SrTiO_3$ structures were coexisted and secondary phase of the $MgTi_2O_5$ were appeared. In the case of $0.96MgTiO_3-0.04SrTiO_3+B_2O_3$(10wt%) ceramics sintered $1225^{\circ}C$, dielectric constant, quality factor and temperature coefficient of resonant frequency were 19.82, 62,735GHz, $-2.983ppm/^{\circ}C$, respectively.

  • PDF

Effect of CuO-V2O5 Addition on Microwave Dielectric Properties of (Pb0.45Ca0.55(Fe0.5Nb0.5)0.9Sn0.1]O3 Ceramics

  • Ha, Jong-Yoon;Choi, Ji-Won;Yoon, Ki-Hyun;Choi, Doo-Jin;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.9-12
    • /
    • 2004
  • The effect of x wt% CuO-y wt% $V_2O_5$ content on the microwave properties of $(Pb_{0.45}Ca_{0.55})[(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O_3$ (PCFNS) ceramics was investigated. In order to decrease the sintering temperature and use as a Low Temperature co-firing Ceramics (LTCC), CuO-$V_2O_5$ are added in the PCFNS. The bulk density, dielectric constant (${\varepsilon}_r$) and quality factor(Q${\cdot}f_0$) increased with increase in CuO content within a limited value. The microwave properties were degraded with increases in $V_2O_5$ content. The temperature coefficient of the resonant frequency (${\tau}_f$) of PCFNS was shifted to positive value abruptly with increasing the $V_2O_5$ content, while the ${\tau}_f$ was slightly shifted to positive value with increasing the CuO content. The optimized microwave properties, ${\varepsilon}_r$ = 88, Q${\cdot}f_0$ = 6100 (GHz), and ${\tau}_f$ = 18 ppm/$^{\circ}C$, were obtained in $(Pb_{0.45}Ca_{0.55})[(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O_3$ with 0.2wt% CuO 0.05 wt% $V_2O_5$ and sintered at $1000^{\circ}C$ for 3 h. The relationship between the microstructure and microwave dielectric properties of ceramics was studied by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM)