• Title/Summary/Keyword: R.T.F.

Search Result 1,846, Processing Time 0.026 seconds

On the growth of entire functions satisfying second order linear differential equations

  • Kwon, Ki-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.487-496
    • /
    • 1996
  • Let f(z) be an entire function. Then the order $\rho(f)$ of f is defined by $$ \rho(f) = \overline{lim}_r\to\infty \frac{log r}{log^+ T(r,f)} = \overline{lim}_r\to\infty \frac{log r}{log^+ log^+ M(r,f)}, $$ where T(r,f) is the Nevanlinna characteristic of f (see [4]), $M(r,f) = max_{$\mid$z$\mid$=r} $\mid$f(z)$\mid$$ and $log^+ t = max(log t, 0)$.

  • PDF

[r, s, t; f]-COLORING OF GRAPHS

  • Yu, Yong;Liu, Guizhen
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Let f be a function which assigns a positive integer f(v) to each vertex v $\in$ V (G), let r, s and t be non-negative integers. An f-coloring of G is an edge-coloring of G such that each vertex v $\in$ V (G) has at most f(v) incident edges colored with the same color. The minimum number of colors needed to f-color G is called the f-chromatic index of G and denoted by ${\chi}'_f$(G). An [r, s, t; f]-coloring of a graph G is a mapping c from V(G) $\bigcup$ E(G) to the color set C = {0, 1, $\ldots$; k - 1} such that |c($v_i$) - c($v_j$ )| $\geq$ r for every two adjacent vertices $v_i$ and $v_j$, |c($e_i$ - c($e_j$)| $\geq$ s and ${\alpha}(v_i)$ $\leq$ f($v_i$) for all $v_i$ $\in$ V (G), ${\alpha}$ $\in$ C where ${\alpha}(v_i)$ denotes the number of ${\alpha}$-edges incident with the vertex $v_i$ and $e_i$, $e_j$ are edges which are incident with $v_i$ but colored with different colors, |c($e_i$)-c($v_j$)| $\geq$ t for all pairs of incident vertices and edges. The minimum k such that G has an [r, s, t; f]-coloring with k colors is defined as the [r, s, t; f]-chromatic number and denoted by ${\chi}_{r,s,t;f}$ (G). In this paper, we present some general bounds for [r, s, t; f]-coloring firstly. After that, we obtain some important properties under the restriction min{r, s, t} = 0 or min{r, s, t} = 1. Finally, we present some problems for further research.

Ptr,s)-CLOSED SPACES AND PRE-(ωr,s)t-θf-CLUSTER SETS

  • Afsan, Bin Mostakim Uzzal;Basu, Chanchal Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.135-149
    • /
    • 2011
  • Using (r, s)-preopen sets [14] and pre-${\omega}_t$-closures [6], a new kind of covering property $P^t_{({\omega}_r,s)}$-closedness is introduced in a bitopological space and several characterizations via filter bases, nets and grills [30] along with various properties of such concept are investigated. Two new types of cluster sets, namely pre-(${\omega}_r$, s)t-${\theta}_f$-cluster sets and (r, s)t-${\theta}_f$-precluster sets of functions and multifunctions between two bitopological spaces are introduced. Several properties of pre-(${\omega}_r$, s)t-${\theta}_f$-cluster sets are investigated and using the degeneracy of such cluster sets, some new characterizations of some separation axioms in topological spaces or in bitopological spaces are obtained. A sufficient condition for $P^t_{({\omega}_r,s)}$-closedness has also been established in terms of pre-(${\omega}_r$, s)t-${\theta}_f$-cluster sets.

ON THE NUMERICAL SOLUTION OF NEUTRAL DELAY DIFFERENTIAL EQUATIONS USING MULTIQUADRIC APPROXIMATION SCHEME

  • Vanani, Solat Karimi;Aminataei, Azim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.663-670
    • /
    • 2008
  • In this paper, the aim is to solve the neutral delay differential equations in the following form using multiquadric approximation scheme, (1) $$\{_{\;y(t)\;=\;{\phi}(t),\;\;\;\;\;t\;{\leq}\;{t_1},}^{\;y'(t)\;=\;f(t,\;y(t),\;y(t\;-\;{\tau}(t,\;y(t))),\;y'(t\;-\;{\sigma}(t,\;y(t)))),\;{t_1}\;{\leq}\;t\;{\leq}\;{t_f},}$$ where f : $[t_1,\;t_f]\;{\times}\;R\;{\times}\;R\;{\times}\;R\;{\rightarrow}\;R$ is a smooth function, $\tau(t,\;y(t))$ and $\sigma(t,\;y(t))$ are continuous functions on $[t_1,\;t_f]{\times}R$ such that t-$\tau(t,\;y(t))$ < $t_f$ and t - $\sigma(t,\;y(t))$ < $t_f$. Also $\phi(t)$ represents the initial function or the initial data. Hence, we present the advantage of using the multiquadric approximation scheme. In the sequel, presented numerical solutions of some experiments, illustrate the high accuracy and the efficiency of the proposed method even where the data points are scattered.

A NOTE ON GENERALIZED DERIVATIONS AS A JORDAN HOMOMORPHISMS

  • Chandrasekhar, Arusha;Tiwari, Shailesh Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.709-737
    • /
    • 2020
  • Let R be a prime ring of characteristic different from 2. Suppose that F, G, H and T are generalized derivations of R. Let U be the Utumi quotient ring of R and C be the center of U, called the extended centroid of R and let f(x1, …, xn) be a non central multilinear polynomial over C. If F(f(r1, …, rn))G(f(r1, …, rn)) - f(r1, …, rn)T(f(r1, …, rn)) = H(f(r1, …, rn)2) for all r1, …, rn ∈ R, then we describe all possible forms of F, G, H and T.

STABILITIES IN DIFFERENTIAL SYSTEMS

  • Park, Sung-Kyu
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.579-591
    • /
    • 1994
  • We consider the nonlinear nonautonomous differential system $$(1) x' = f(t,x), x(t_0) = x_0,$$ where $f \in C(R^+ \times R^n, R^n)$ and $R^+ = [0, \infty}$. We assume that the Jacobian matrix $f_x = \partail f/\partial x$ exists and is continuous on $R^+ \times R^n$ and that $f(t,0) \equiv 0$. The symbol $$\mid$\cdot$\mid$$ denotes arbitary norm in $R^n$.

  • PDF

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan;Oh, Dong Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1969-1980
    • /
    • 2017
  • Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

A NOTE ON ITO PROCESSES

  • Park, Won
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.731-737
    • /
    • 1994
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.

  • PDF

Euler-Maruyama Numerical solution of some stochastic functional differential equations

  • Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.13-30
    • /
    • 2007
  • In this paper we study the numerical solutions of the stochastic functional differential equations of the following form $$du(x,\;t)\;=\;f(x,\;t,\;u_t)dt\;+\;g(x,\;t,\;u_t)dB(t),\;t\;>\;0$$ with initial data $u(x,\;0)\;=\;u_0(x)\;=\;{\xi}\;{\in}\;L^p_{F_0}\;([-{\tau},0];\;R^n)$. Here $x\;{\in}\;R^n$, ($R^n$ is the ${\nu}\;-\;dimenional$ Euclidean space), $f\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^n,\;g\;:\;C([-{\tau},\;0];\;R^n)\;{\times}\;R^{{\nu}+1}\;{\rightarrow}\;R^{n{\times}m},\;u(x,\;t)\;{\in}\;R^n$ for each $t,\;u_t\;=\;u(x,\;t\;+\;{\theta})\;:\;-{\tau}\;{\leq}\;{\theta}\;{\leq}\;0\;{\in}\;C([-{\tau},\;0];\;R^n)$, and B(t) is an m-dimensional Brownian motion.

  • PDF

Power consumption of skull melting

  • Assmus, W.;Gross, C.;Muiznieks, A.;Raming, G.;Muhlbauer, A.;Stenzel, C.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.353-359
    • /
    • 1999
  • PDF