• 제목/요약/키워드: R. albus

검색결과 45건 처리시간 0.02초

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

혐기성 세균 Ruminococcus albus F-40에 의한 목재 cellulose의 분해특성 (Degradation Characteristics of Wood Cellulose by Ruminal Cellulolytic Anaerobic Bacterium Ruminococcus albus F-40)

  • 김윤수;위승곤;명규호
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.83-95
    • /
    • 1997
  • The degradation mode of lignocellulose by anaerobic ruminal cellulolytic bacterium Ruminococcus albus F-40 was investigated. Birchwood holocellulose and filter paper were incubated as the sole carbohydrate sources with using the Hungate techniques. After 2 or 4 days of incubation, samples were employed for chemical and electron microscopic evaluations. The degradation rate of cellulosic substrates and the adhesion rate of bacteria to the substrates increased proportionally with the decrease of relative crystallinity of cellulose, indicating the preferential breakdown of amorphous cellulose, by this bacterium. X-ray diffraction analyses and polarized light microscopy showed, however, that crystalline cellulose was also degraded by R. albus. FT-IR spectra indicated that not only cellulose but hemicellulose was also degraded by this bacterium. Electron microscopic investigations showed the protuberant structures on the surface of R. albus. These structures were much more significant when bacterial cells were grown in the media containing insoluble substrates, such as cellulose, indicating clearly that bacterial protuberant structures were induced by the substrates. Protuberant structures extended from the bacterial cells adhered tightly to the substrates and numerous vesicles covered the surface of cellulosic substrates affected. Cellulosome-like structures were distributed on the cellulose matrix. Electron microscopic works showed that diverse surface organells of R. albus were involved in the degradation of cellulosic materials. SEM examinations showed the breakdown of cellulose by R. albus was proceeded by severeal routes : short fiber formation, defibrillation and destrafication of cellulose microfibril.

  • PDF

Effects of Methylcellulose on Cellulolytic Bacteria Attachment and Rice Straw Degradation in the In vitro Rumen Fermentation

  • Sung, Ha Guyn;Kim, Min Ji;Upadhaya, Santi Devi;Ha, Jong K.;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권9호
    • /
    • pp.1276-1281
    • /
    • 2013
  • An in vitro experiment was conducted to evaluate the effect of methylcellulose on the attachment of major cellulolytic bacteria on rice straw and its digestibility. Rice straw was incubated with ruminal mixture with or without 0.1% methylcellulose (MC). The attachment of F. succinogenes, R. flavefaciens and R. albus populations on rice straw was measured using real-time PCR with specific primer sets. Methylcellulose at the level of 0.1% decreased the attachment of all three major cellulolytic bacteria. In particular, MC treatment reduced (p<0.05) attachment of F. succinogenes on rice straw after 10 min of incubation while a significant reduction (p<0.05) in attachment was not observed until 4 h incubation in the case of R. flavefaciens and R. albus. This result indicated F. succinogenes responded to MC more sensitively and earlier than R. flavefaciens and R. albus. Dry matter digestibility of rice straw was subsequently inhibited by 0.1% MC, and there was a significant difference between control and MC treatment (p<0.05). Incubated cultures containing MC had higher pH and lower gas production than controls. Current data clearly indicated that the attachment of F. succinogenes, R. flavefaciens and R. albus on rice straw was inhibited by MC, which apparently reduced rice straw digestion.

Microbial Evaluation of Fodder Tree Leaves as Ruminant Feed

  • Odenyo, A.A.;Osuji, P.O.;Negassa, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권5호
    • /
    • pp.708-714
    • /
    • 1999
  • Fermentation of legume fodder tree leaves by rumen microorganisms was evaluated. The substrates were sun-dried, ground leaves. Gas and volatile fatty acid (VFAs) production were estimated. Using gas production as an index of fermentation at 12 h, the leaves tested ranked as follows; Chamaecytisus palmensis>Gliricidia sepium>Sebania sesban>Tephrosia bracteolate>Leucaena pallida>Vernonia amygdalina>Acacia sieberiana>Sesbania goetzei>Acacia angustissima. Using VFA production, the ranking was a follows; G. sepium>S. sesban>S. goetzei>L. pallida>C. palmensis/V. amygdalina>T. bracteolate> A. sieberiana>A. angustissima. Absolute gas or VFA production rates, were also used to rank the leaves. Extracts (70% acetone) of A. angustissima inhibited the growth of Ruminococcus albus 8, R. flavefaciens FD-1, Prevotella ruminicola D3ID and Streptococcus bovis JBI while the trowth of Selenomonas ruminantium D was depressed when 0.6 ml exracts were added. C. palmensis water extracts enhanced cellulose hydrolysis by R. flavefaciens FD-1. All extracts reduced celluloysis by R. albus 8. R. flavefaciens FD-1 hydrolyzed more (p<0.001) cellulose than R. albus 8.

Cellulosome-Like Structures in Ruminal Cellulolytic Bacterium Ruminococcus albus F-40 as Revealed by Electron Microscopy

  • Kim, Y.S.;Singh, A.P.;Wi, S.G.;Myung, K.H.;Karita, S.;Ohmiya, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권10호
    • /
    • pp.1429-1433
    • /
    • 2001
  • This study provides electron microscopic evidence for the presence of cellulosome-like structures on the cell surface of Ruminococcus albus F-40. Electron microscopy showed that clusters of tightly packed spherical particles were located on the cell surface of R. albus. The protuberant structures present mainly on the bacterial surface and also bound to the cellulose substrate appeared to be the site of cellulosome-like structures. From the evidence presented, we suggest that the structures described here might be a characteristic feature of some ruminal cellulolytic bacteria.

Real-Time PCR 기법을 이용한 반추위 섬유소분해 박테리아의 부착과 조사료 분해에 관한 연구 (Study on Roughage Degradation and Adhesion of Rumen Fibrolytic Bacteria by Real-Time PCR)

  • 성하균
    • 한국초지조사료학회지
    • /
    • 제34권1호
    • /
    • pp.60-67
    • /
    • 2014
  • 본 연구는 조사료의 반추위 발효가 진행됨에 따른 볏짚표면에 부착된 섬유소 분해 박테리아의 군집변화와 섬유소 소화율을 비교 관측하기 위하여 볏짚의 in situ 반추 발효를 실시하였다. 그리고 부착 박테리아의 군집 변화를 측정하기 위하여 RT-PCR 기법을 이용하여 F. succinogenes. R. albus와 R. flavefaciens의 군집을 모니터링 하였다. 본 연구를 수행하기 위하여 in situ 볏짚 발효를 0. 2, 4, 8, 12, 24시간 실시하였을 때 반추위내 볏짚의 in situ 분해는 발효 시간이 진행됨에 따라 가속화되어 발효 8~12시간 사이에 최고 분해 속도를 나타내었으나, F. succinogenes, R. flavefaciens과 R. albus는 모두 발효 0~1시간 사이에 볏짚 표면에 부착이 80% 이상 완료되어 이후 발효가 계속 진행되는 동안 일정 수준의 군락을 유지하는 것이 발견되었다. 그리고 반추위내 유입된 조사료의 표면에 초기 부착과정을 관찰하기 위하여 0, 5, 10, 30 및 60분 간격으로 볏짚의 in situ 샘플을 채취하여 조사하였을 때 F. succinogenes, R. flavefaciens 및 R. albus의 군락 모두 볏짚이 반추위 유입 후 5분 내에 상당량의 수가 부착함을 발견하였다. 또한 조사료의 반추위 발효 용이성에 따른 섬유소 분해 박테리아의 부착 정도를 관찰하기 위하여 0, 2, 4 및 8% NaOH를 처리한 볏짚을 12 및 24시간 in situ 배양 볏짚의 소화율과 부착 박테리아의 군집 변화를 관측하였을 때, 볏짚의 NaOH 처리 농도가 높아짐에 따라 in situ 소화율이 증가하였으며, 동시에 부착된 박테리아 군집의 증가 경향이 F. succinogenes, R. flavefaciens 및 R. albus의 3균주 모두 배양 12시간에 나타났으나 배양 24시간에서는 각기 다른 양상을 나타냈다. 따라서 본 연구결과는 반추위내 섬유소 발효과정에서 섬유소 분해 박테리아의 부착은 조사료의 반추위 유입 초기에 반드시 이루어지고, 발효 시간이 진행됨에 따라 조사료 표면에 안정된 군락을 형성하며, 섬유소 분해가 가속화된다는 사실을 보여 주었다.

Streptomyces albus로부터 분리된 Type II Polyketide Synthase 유전자의 염기 서열 및 분석 (Nucleotide Sequence and Analysis of the Genes for Type II Polyketide Synthase Isolated from Streptomyes albus)

  • 권형진;;진형종;김수언;이계준;서주원
    • 한국미생물·생명공학회지
    • /
    • 제23권2호
    • /
    • pp.178-186
    • /
    • 1995
  • Streptomyces albus wild type ATCC 21838 produced salinomycin, polyether antibiotic. To clone genes related salinomycin production, a genomic library was screened using actI as a DNA hybridization probe. pWHM 210 was isolated, which contained an approximately 24 kb of insert DNA. A 3.8 kb region in the 24 kb insert DNA was hybridized to actI and the nucleotide sequence of this region was determinied. Two open reading frames found in the same direction were homologous to genes for $\beta$-keto acyl synthase/acyl transferase and chain length determining factor in type II PKS (polyketide synthase). The genes were components of minimal type II PKS genes, highly conserved and showed the strong simiarity to other type II PKS genes known today.

  • PDF

Effects of Aspergillus Oryzae Culture and 2-Hydroxy-4-(Methylthio)-Butanoic Acid on In vitro Rumen Fermentation and Microbial Populations between Different Roughage Sources

  • Sun, H.;Wu, Y.M.;Wang, Y.M.;Liu, J.X.;Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권9호
    • /
    • pp.1285-1292
    • /
    • 2014
  • An in vitro experiment was conducted to evaluate the effects of Aspergillus oryzae culture (AOC) and 2-hydroxy-4-(methylthio)-butanoic acid (HMB) on rumen fermentation and microbial populations between different roughage sources. Two roughage sources (Chinese wild rye [CWR] vs corn silage [CS]) were assigned in a $2{\times}3$ factorial arrangement with HMB (0 or 15 mg) and AOC (0, 3, or 6 mg). Gas production (GP), microbial protein (MCP) and total volatile fatty acid (VFA) were increased in response to addition of HMB and AOC (p<0.01) for the two roughages. The HMB and AOC showed inconsistent effects on ammonia-N with different substrates. For CWR, neither HMB nor AOC had significant effect on molar proportion of individual VFA. For CS, acetate was increased (p = 0.02) and butyrate was decreased (p<0.01) by adding HMB and AOC. Increase of propionate was only occurred with AOC (p<0.01). Populations of protozoa ($p{\leq}0.03$) and fungi ($p{\leq}0.02$) of CWR were differently influenced by HMB and AOC. Percentages of F. succinogenes, R. albus, and R. flavefaciens (p<0.01) increased when AOC was added to CWR. For CS, HMB decreased the protozoa population (p = 0.01) and increased the populations of F. succinogenes and R. albus ($p{\leq}0.03$). Populations of fungi, F. succinogenes (p = 0.02) and R. flavefacien (p = 0.03) were increased by adding AOC. The HMB${\times}$AOC interactions were noted in MCP, fungi and R. flavefacien for CWR and GP, ammonia-N, MCP, total VFA, propionate, acetate/propionate (A/P) and R. albus for CS. It is inferred that addition of HMB and AOC could influence rumen fermentation of forages by increasing the number of rumen microbes.

Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw

  • Kim, Min Ji;Sung, Ha Guyn;Upadhaya, Santi Devi;Ha, Jong K.;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권10호
    • /
    • pp.1459-1465
    • /
    • 2013
  • Two in vitro experiments were conducted to evaluate the effect of methylcellulose (MC) on i) bacterial detachment from rice straw as well as ii) inhibition of bacterial attachment and fiber digestibility. To evaluate the effect of MC on fibrolytic bacterial detachment (Exp 1), in vitro bacterial cultures with 0.1% (w/v) MC solution were compared with cultures without MC after 8 h incubation. The effect of MC on inhibition of bacterial attachment was determined by comparing with real-time PCR the populations of F. succinogenes, R. flavefaciens and R. albus established on rice straw pre-treated with 0.1% MC with those on untreated straw after incubation for 0, 6 and 12 h (Exp 2). The major fibrolytic bacterial attachment on rice straw showed significantly lower populations with either the addition of MC to the culture or pre-treated rice straw compared to controls (p<0.05). Also, the digestibility of rice straw with MC was significantly lower compared with control (p<0.05). The F. succinogenes population did not show detachment from rice straw, but showed an inhibition of attachment and proliferation on rice straw in accordance with a decrease of fiber digestion. The detachments of Ruminococcus species co-existed preventing the proliferations with subsequent reduction of fiber degradation by MC during the incubation. Their detachments were induced from stable colonization as well as the initial adhesion on rice straw by MC in in vitro ruminal fermentation. Furthermore, the detachment of R. albus was more sensitive to MC than was R. flavefaciens. These results showed the certain evidence that attachment of major fibrolytic bacteria had an effect on fiber digestion in the rumen, and each of fibrolytic bacteria, F. succinogenes, R. flavefaciens and R. albus had a specific mechanism of attachment and detachment to fiber.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.