• Title/Summary/Keyword: R-module

Search Result 1,038, Processing Time 0.025 seconds

A Note on c-Separative Modules

  • Chen, Huanyin
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.357-361
    • /
    • 2007
  • A right R-module P is $c$-separative provided that $$P{\oplus}P{{c}\atop{\simeq_-}}P{\oplus}Q{\Longrightarrow}P{\simeq_-}Q$$ for any right R-module Q. We get, in this paper, two sufficient conditions under which a right module is $c$-separative. A ring R is a hereditary ring provided that every ideal of R is projective. As an application, we prove that every projective right R-module over a hereditary ring is $c$-separative.

  • PDF

CHARACTERIZING S-FLAT MODULES AND S-VON NEUMANN REGULAR RINGS BY UNIFORMITY

  • Zhang, Xiaolei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.643-657
    • /
    • 2022
  • Let R be a ring and S a multiplicative subset of R. An R-module T is called u-S-torsion (u-always abbreviates uniformly) provided that sT = 0 for some s ∈ S. The notion of u-S-exact sequences is also introduced from the viewpoint of uniformity. An R-module F is called u-S-flat provided that the induced sequence 0 → A ⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact for any u-S-exact sequence 0 → A → B → C → 0. A ring R is called u-S-von Neumann regular provided there exists an element s ∈ S satisfying that for any a ∈ R there exists r ∈ R such that sα = rα2. We obtain that a ring R is a u-S-von Neumann regular ring if and only if any R-module is u-S-flat. Several properties of u-S-flat modules and u-S-von Neumann regular rings are obtained.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Roshan-Shekalgourabi, Hajar
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.211-218
    • /
    • 2018
  • Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. It is shown that if $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}{\dim}\;M$, then the R-module $Ext^i_R(N,M)$ is minimax for all $i{\geq}0$ and for any finitely generated R-module N with $Supp_R(N){\subseteq}V(a)$ and dim $N{\leq}1$. As a consequence of this result we obtain that for any a-torsion R-module M that $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}dim$ M, all Bass numbers and all Betti numbers of M are finite. This generalizes [8, Corollary 2.7]. Also, some equivalent conditions for the cominimaxness of local cohomology modules with respect to ideals of dimension at most one are given.

MATLIS INJECTIVE MODULES

  • Yan, Hangyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.459-467
    • /
    • 2013
  • In this paper, Matlis injective modules are introduced and studied. It is shown that every R-module has a (special) Matlis injective preenvelope over any ring R and every right R-module has a Matlis injective envelope when R is a right Noetherian ring. Moreover, it is shown that every right R-module has an ${\mathcal{F}}^{{\perp}1}$-envelope when R is a right Noetherian ring and $\mathcal{F}$ is a class of injective right R-modules.

A Design and Fabrication of a Compact Ka Band Transmit/Receive Module Using a Quad-Pack (쿼드팩을 이용한 소형 Ka 대역 송수신(T/R) 모듈의 설계 및 제작)

  • Oh, Hyun-Seok;Yeom, Kyung-Whan;Chong, Min-Kil;Na, Hyung-Gi;Lee, Sang-Joo;Lee, Ki-Won;Nam, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.389-398
    • /
    • 2011
  • In this paper, the design and fabrication of a transmit/receive(T/R) module for Ka-band phased array radar is presented. A 5bit digital phase shifter and digital attenuator were used in common for both transmitter and receiver considering unique Ka-band characteristic. The circulator was excluded in the T/R module and was placed outside T/R module. The transmitting power per element antenna is designed to be about 1 W and the noise figure is designed to be below 8 dB. The designed T/R module RF part has a compact size of $5\;mm{\times}4\;mm{\times}57\;mm$. In order to implement the T/R module, MMICs used in T/R module was separately assessed before assembly of the designed T/R module. The transmitter of the fabricated T/R module shows about 1 W at 5 dBm unit module input power and the receiver shows a gain of about 20 dB and a noise figure of below 8 dB as expected in the design stage.

ON Φ-FLAT MODULES AND Φ-PRÜFER RINGS

  • Zhao, Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1221-1233
    • /
    • 2018
  • Let R be a commutative ring with non-zero identity and let NN(R) = {I | I is a nonnil ideal of R}. Let M be an R-module and let ${\phi}-tor(M)=\{x{\in}M{\mid}Ix=0\text{ for some }I{\in}NN(R)\}$. If ${\phi}or(M)=M$, then M is called a ${\phi}$-torsion module. An R-module M is said to be ${\phi}$-flat, if $0{\rightarrow}{A{\otimes}_R}\;{M{\rightarrow}B{\otimes}_R}\;{M{\rightarrow}C{\otimes}_R}\;M{\rightarrow}0$ is an exact R-sequence, for any exact sequence of R-modules $0{\rightarrow}A{\rightarrow}B{\rightarrow}C{\rightarrow}0$, where C is ${\phi}$-torsion. In this paper, the concepts of NRD-submodules and NP-submodules are introduced, and the ${\phi}$-flat modules over a ${\phi}-Pr{\ddot{u}}fer$ ring are investigated.

ON GI-FLAT MODULES AND DIMENSIONS

  • Gao, Zenghui
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.203-218
    • /
    • 2013
  • Let R be a ring. A right R-module M is called GI-flat if $Tor^R_1(M,G)=0$ for every Gorenstein injective left R-module G. It is shown that GI-flat modules lie strictly between flat modules and copure flat modules. Suppose R is an $n$-FC ring, we prove that a finitely presented right R-module M is GI-flat if and only if M is a cokernel of a Gorenstein flat preenvelope K ${\rightarrow}$ F of a right R-module K with F flat. Then we study GI-flat dimensions of modules and rings. Various results in [6] are developed, some new characterizations of von Neumann regular rings are given.

STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES

  • Payrovi, S.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.611-620
    • /
    • 2002
  • The aim of the Paper is to Obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of a is of the form $\prod_{p\epsilonAtt_R(A)}T-p$, where $Tp$ is the completion of a free R$_{p}$-module. Also, we construct a minimal flat resolution for R/xR-module 0: $_AX$ from a given minimal flat resolution of A, when n is a non-unit and non-zero divisor of R such that A = $\chiA$. This result leads to a description of the structure of a minimal flat resolution for ${H^n}_{\underline{m}}(R)$, nth local cohomology module of R with respect to the ideal $\underline{m}$, over a local Cohen-Macaulay ring (R, $\underline{m}$) of dimension n.

HEART AND COMPLETE PARTS OF (R, S)-HYPER BI-MODULE

  • Nooranian, M.;Davvaz, B.
    • The Pure and Applied Mathematics
    • /
    • v.29 no.3
    • /
    • pp.207-230
    • /
    • 2022
  • In this article, we investigate several aspects of (R, S)-hyper bi-modules and describe some their properties. The concepts of fundamental relation, completes part and complete closure are studied regarding to (R, S)-hyper bi-modules. In particular, we show that any complete (R, S)-hyper bi-module has at least an identity and any element has an inverse. Finally, we obtain a few results related to the heart of (R, S)-hyper bi-modules.